## Grain size QTL region *QTgw.ipk-7D* in wheat: sequence analysis and synteny to related grass species

<u>Cornelia Jaenecke<sup>1</sup></u>, Christine Zanke<sup>1</sup>, Nicola Weichert<sup>1</sup>, Hana Simkova<sup>2</sup>, Jaroslav Dolezel<sup>2</sup>, David Wolff<sup>1</sup>, Uwe Scholz<sup>1</sup>, Axel Himmelbach<sup>1</sup>, Nils Stein<sup>1</sup>, Marion Roder<sup>1</sup>

<sup>1</sup> Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany

<sup>2</sup> Laboratory of Molecular Cytogenetics and Cytometry, Institute of Experimental Botany, Olomouc, Czech Republic

The previously described QTL for thousand-grain weight QTgw.ipk-7D associated with microsatellite marker Xgwm1002-7D was originally detected in a BC<sub>2</sub>F<sub>3</sub> advanced backcross population of the winter wheat variety 'Prinz' and the synthetic wheat line W-7984 (lab designation: M6) (Huang et al., 2003). We developed nearly-isogenic lines (NILs) carrying introgressions of M6 in the genetic background of 'Prinz' with varying size on chromosome 7DS. The BC<sub>4</sub>F<sub>3</sub> NILs had a 10% increase in thousand-grain weight compared to the control group and the recurrent parent 'Prinz'. The same QTL was detected in another population of winter wheat 'Flair' and synthetic wheat 'XX86' (Huang et al. 2004). By using homozygous recombinant lines developed from both populations, it was possible to fine-map QTgw.ipk-7D to an interval of approx. 1 cM flanked by markers barc126, wmc405 and gwm44 on wheat chromosome arm 7DS. From a chromosome arm 7DS-specific BAC library, BACs covering the region of *QTgw.ipk-7D* were isolated and their sequences were obtained by 454 sequencing. Of the sequenced BACs, new microsatellite markers were developed and used for anchoring the BACs to the genetic map. Finally the region of QTgw.ipk-7D was delimited to 6 BACs carrying ca. 12 predicted genes. A good synteny to the genomic sequences of rice, Brachypodium and Sorghum was observed. A BAC contig covering the respective genomic region in barley was identified and also completely sequenced. A detailed comparison of the barley sequence to the wheat sequence with respect to genome evolution is currently conducted.

For verification of possible candidate genes, sequencing of the genes from parental lines and various NILs aiming to identify SNPs is ongoing. In addition, sequence capture technology will be used for detecting new SNPs in this region. In general, our data support the concept of using nearly isogenic introgression lines for validating and dissecting QTL into single Mendelian genes and open the gateway for map-based cloning of a grain size QTL in wheat.