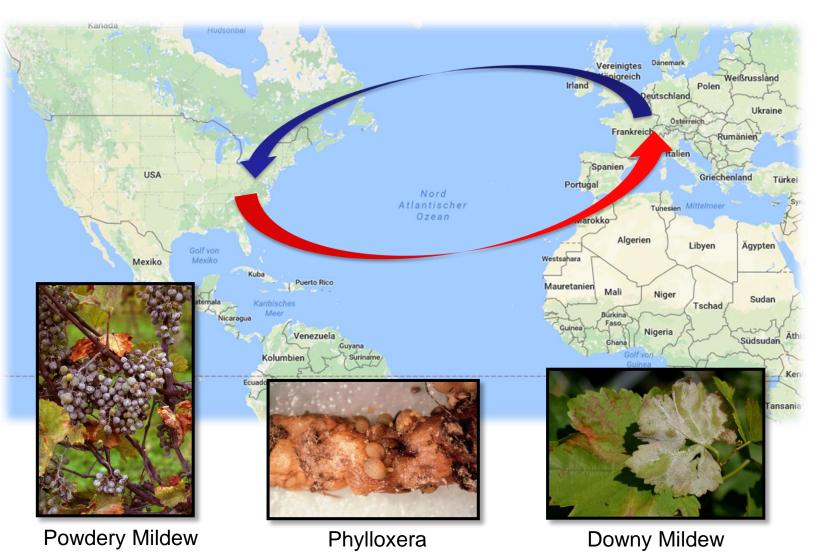





Bundesforschungsinstitut für Kulturpflanzen Federal Research Centre for Cultivated Plants



Fauser & Puchta, 2014


#### Application of CRISPR/Cas in Grapevine – Potentials and Problems

04.09.2018 Oliver Trapp Institute for Grapevine Breeding Geilweilerhof

www.julius-kuehn.de

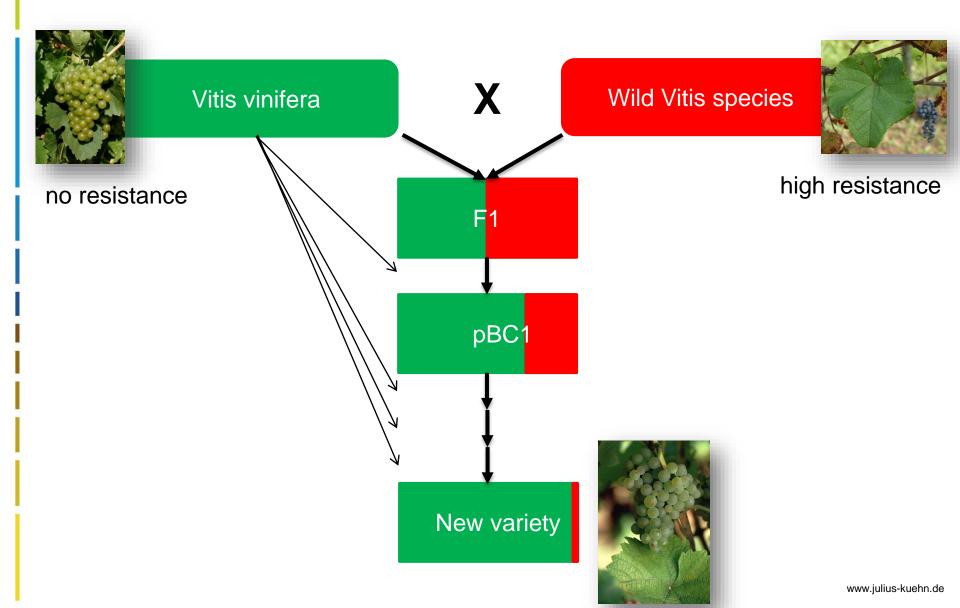
## Origin of the main grapevine pests





Viticulture on around 100.000 ha in Germany (equals ~1% of agriculture area)

Production of 9-10 mio. hl wine per year (5,8 in Rhineland-Palatinate)


Export of 1 million hI with a value of around 300 mio. €

Portion of fungicides used in the EU for viticulture: 60-70%

## → Breeding for resistance

# Breeding for resistance in grapevine





## **Problems with new varieties**



Since 1992 35 new fungus tolerant varieties were protected/registered in Germany

Acreage total: ~3.000 ha (3% of viticultural area)

Consumers buy according to the variety name

|     | Variety               | Acreage in 2017 |
|-----|-----------------------|-----------------|
|     |                       | in ha           |
| 1.  | Riesling, Weißer      | 23.809          |
| 2.  | Müller-Thurgau        | 12.397          |
| 3.  | Spätburgunder, Blauer | 11.767          |
| 4.  | Dornfelder            | 7.649           |
| 5.  | Ruländer              | 6.402           |
| 6.  | Burgunder, Weißer     | 5.334           |
| 7.  | Silvaner, Grüner      | 4.853           |
| 8.  | Portugieser, Blauer   | 2.956           |
| 9.  | Kerner                | 2.591           |
| 10. | Trollinger, Blauer    | 2.194           |
| ()  |                       |                 |
| 14. | Regent                | 1.811           |
| ()  |                       |                 |
| 36. | Solaris               | 147             |

## Limitations of resistance breeding



Grapevine is diploid and highly heterozygous:

A genetic locus is **heterozygous** if there are different **alleles** present in an organism

Heterozygous advantage is the base of the heterosis effect:

E.g. hybrid maize:



# Limitations of resistance breeding



The combination of alleles defines a variety

Every crossing mixes the alleles of the parents in a new way (Cross with Riesling will not results in new "Rieslings")

(Vegetative propagation of grapevines)



## The Solution: Biotechnology

**j**Ki

1) Introduction of resistance genes:



Feechan et al., 2013

Drawbacks: Not enough knowledge about most genes responsible for resistances Transgenic plants

#### 2) Mutagenesis:

Via chemicals, radiation or Site-Directed Nucleases (CRISPR/Cas9)

Drawbacks: Not enough knowledge about genes responsible for susceptibility Transgenic plants (*CRISPR/Cas9*)

## **Decision of the European Court of Justice**



 Plants created by CRISPR/Cas9 have to be treated as GMOs (other mutagenesis methods: no GMOs)

 $\rightarrow$  Lengthy and expensive approval process

- No acceptance for a GMO CRISPR/Cas9-created variety in society
- "I can't see (how) CRISPR–Cas9 and all these new technologies will be profitable in the European Union. I can't see this happening. I think this research will move somewhere else." (Kai Purnhagen, Nature 560, 16 (2018))
- Severly reduced funding for research?

## Genome Editing by CRISPR/Cas9

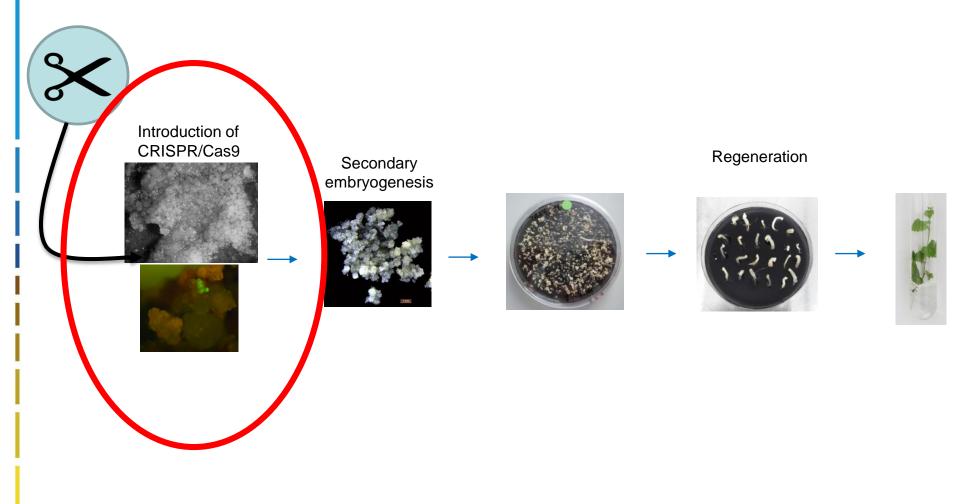


- Method relies on the cell's DNA repair mechanisms
- Changes are not distinguishable from natural mutations
- In grapevine: clonal selections harbor more mutations than CRISPR would introduce

#### Three clones of Pinot Noir:



Photo: Antes






Photos: Robert Richter

### Workflow for grapevine





#### **Options for the application of CRISPR/Cas9**



# Stable transformation of the CRISPR/Cas9 genes via Agrobacterium

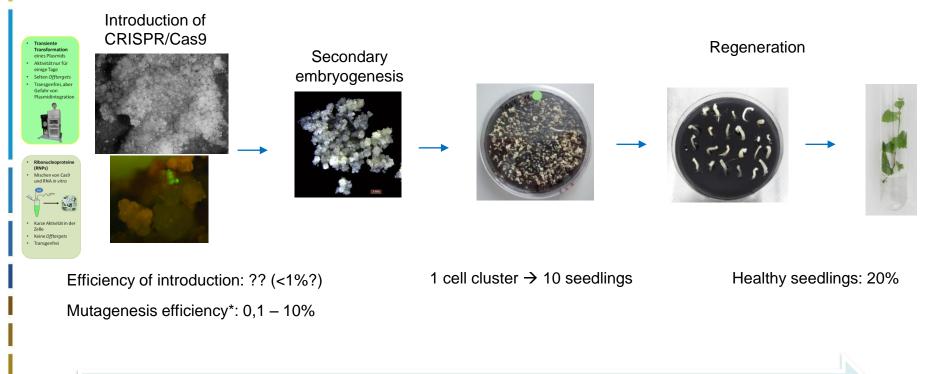



- Offtarget-activity
- High efficiency

 Transient transformation of a plasmid

- Activity for a few days
- Rare Offtargets
- Usually transgene-free




- Ribonucleoproteins (RNPs)
- Mixing Cas9 and RNA *in vitro*



- Short activity in the cell
- No Offtargets
- Transgene-free

#### Limitations in grapevine – Transformation & Regeneration





#### Time: ~12 Months

→ Genome Editing efficiencies will be very low (~1 edited plant per 5000 cell masses via RNPs)

\*: transient transformation or RNPs

Oliver Trapp – Application of CRISPR/Cas in Grapevine

#### What was done with CRISPR/Cas9 in grapevine?



"CRISPR/Cas9-mediated efficient targeted mutagenesis in Chardonnay " (Ren et al, 2016)

- Stable transformation
- L-Idonat Dehydrogenase (IdnDH) as target  $\rightarrow$  change in tartaric acid

|   | Stabile<br>Transformation<br>per<br>Agrobacterium |
|---|---------------------------------------------------|
|   |                                                   |
| • | Transgen (→<br>Rückkreuzungen)                    |
| • | Offtarget-Aktivität<br>nachweisbar                |
| • | Hohe Effizienz                                    |

| Vector                   | No. of<br>obtained<br>CMs | No. of<br>CMs with<br>T-DNA | No. of<br>examined<br>CMs | No. of<br>CMs with<br>mutation | Mutation<br>rate in CMs<br>(%) | No. of<br>regenerated<br>plants | No. of<br>plants with<br>T-DNA | No. of<br>plants with<br>mutation | Mutation rate<br>in plants (%) |
|--------------------------|---------------------------|-----------------------------|---------------------------|--------------------------------|--------------------------------|---------------------------------|--------------------------------|-----------------------------------|--------------------------------|
| AtU6-(None)-CaMV35S-Cas9 | 62                        | 27                          | 10                        | 0                              | 0.0                            | 4                               | 1                              | 0                                 | 0.0                            |
| AtU6-sgRNA1-CaMV35S-Cas9 | 58                        | 21                          | 10                        | 10                             | 100.0                          | 6                               | 3                              | 3                                 | 100.0                          |
| AtU6-sgRNA2-CaMV35S-Cas9 | 15                        | 3                           | 3                         | 1                              | 33.3                           | 0                               | 0                              | 0                                 | 0.0                            |

Outcome: 3 edited plants (GMOs) out of 58 cell masses

#### What was done with CRISPR/Cas9 in grapevine?



"DNA-free genetically edited grapevine (...) protoplasts using CRISPR/Cas9 RNPs" (Malnoy et al, 2017)

- Introduction of RNPs into Chardonnay
- MLO-7 as target (putative susceptibility gene)

| Target gene        | Sample name      | Number of Reads<br>(more than minimum<br>frequency) |       | Number of insertion mutations |    |    | Number of deletion mutations |         |    | Indel ratio<br>(average, %) |      |
|--------------------|------------------|-----------------------------------------------------|-------|-------------------------------|----|----|------------------------------|---------|----|-----------------------------|------|
|                    |                  | 1                                                   | 2     | 3                             | 1  | 2  | 3                            | 1       | 2  | 3                           |      |
| MLO-7 (RG4, grape) | sgRNA only       | 56302                                               | 52455 | 54565                         | 0  | 0  | 0                            | 0       | 0  | 0                           | 0.00 |
|                    | Cas9 only        | 9924                                                | 10123 | 10001                         | 0  | 0  | 0                            | 0       | 0  | 0                           | 0.00 |
|                    | Cas9: sgRNA, 1:1 | 51558                                               | 52015 | 52206                         | 0  | 0  | 0                            | 49      | 55 | 64                          | 0.10 |
|                    | Cas9; sgRNA, 1:3 | 56546                                               | 55432 | 56421                         | 2  | 4  | 6                            | 71      | 74 | 69                          | 0.10 |
|                    | Cas9; sgRNA, 3:1 | 67286                                               | 64532 | 66876                         | 42 | 57 | 68                           | 10      | 12 | 9                           | 0.10 |
| CRISPR             | /Cas9            | Second                                              |       |                               |    |    | Regen                        | eration |    |                             |      |



#### What was done with CRISPR/Cas9 in grapevine?



#### CRISPR/Cas9-mediated targeted mutagenesis in grape (Nakajima et al., 2017)

- Stable transformation into cultivar Neo Muscat
- Target was Phytoene Desaturase (PDS) leading to loss of chlorophyll



Offtarget-activity High efficiency

Table 3. Emergence rate of mutated plants via embryo induction method.

| Target            | Agrobacterium infected calli | Regenerated<br>plants | Regenerated plants with chlorophyll<br>deficiency | Ratio of plants with chlorophyll<br>deficiency (%) |
|-------------------|------------------------------|-----------------------|---------------------------------------------------|----------------------------------------------------|
| PDS-t2<br>(Exp.2) | 21                           | 29                    | 8                                                 | 27.6                                               |
| PDS-t2<br>(Exp.3) | 58                           | 31                    | 1                                                 | 3.2                                                |
| PDS-t3<br>(Exp.3) | 72                           | 18                    | 2                                                 | 11.1                                               |

 $\rightarrow$  Efficiency was quite high, however...



### ...however: Only chimeric plants were regenerated:



#### Scienza Biotechnologies work in progress (Giacomelli et al., 2018):

Targeting different susceptibility genes with a stable transformation approach:

- DMR6\_1, DMR6\_2
- DLO1, DLO2, DLO3
- MLO7

Most candidates found by their homology to Arabidopsis

DMR6\_1: 480 regenerated plants of which 29 are completely edited

currently being screened for resistance



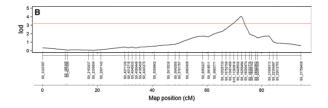




```
 Offtarget-activity High efficiency
```

Oliver Trapp – Application of CRISPR/Cas in Grapevine

#### Limitations of grapevine - genomic targets?


Susceptibility loci: Only one known so far: *Sen1* (Barba et al., 2014) Size approx. 1Mb

Susceptibility gene MLO:

1997 first characterized in barley. Mutation  $\rightarrow$  Powdery Mildew resistance

But: In grapevine there seem to be around 19 MLO genes present

 $\rightarrow$  Lack of knowledge for good susceptibility genes







#### **Comparison of biotechnological approaches:**

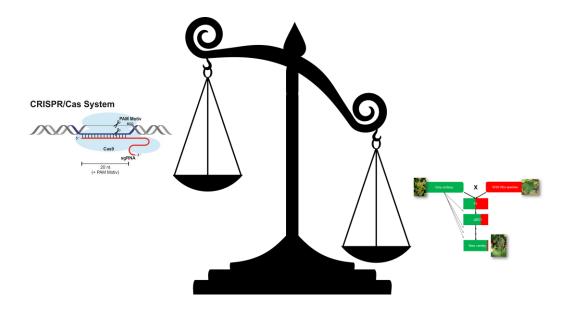
|     | 20 |
|-----|----|
|     | Ki |
| ₹ / |    |

20

| Transformation of resistance genes    | Mutagenesis by<br>CRISPR/Cas9 (transient<br>or RNPs)              |
|---------------------------------------|-------------------------------------------------------------------|
| GMO                                   | GMO                                                               |
| Insertion of DNA                      | No cis-/transgene insertion                                       |
| Insertion not defined                 | Well defined change in the<br>genome<br>(No offtargets with RNPs) |
| Some knowledge about resistance genes | Almost no knowledge about<br>susceptibility genes                 |
| Higher efficiency                     | Lower efficiency                                                  |

Need for better introduction/transformation methods and better regeneration protocols

Low efficiencies in the introduction of CRISPR/Cas9 and the regeneration of plants together with the lack of knowledge for good susceptibility genes hinder CRISPR/Cas9-based mutagenesis in grapevine, although it is the "cleaner" method.


Especially when the resulting plants will be GMOs.

#### New breeding technologies vs classical breeding



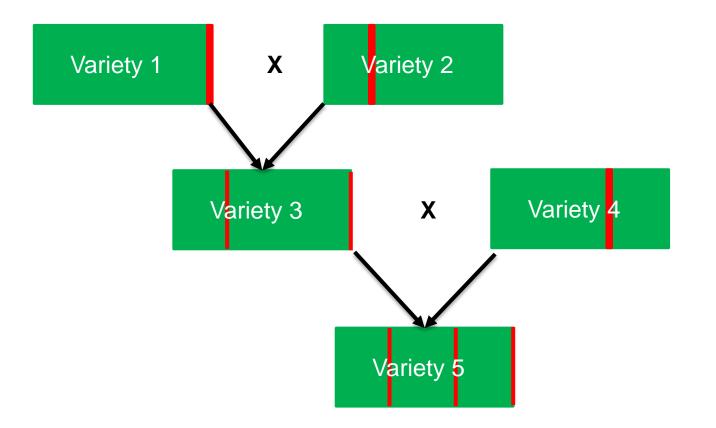
State of the art in classical breeding:

- 3 resistance genes against each: downy and powdery mildew in current seedlings
- Creation of locus specific homozygous lines for higher throughput when searching for new varieties of a certain type
- New varieties open new possibilities to deal with climate change





# Calardis blanc




# Thank you for your attention!

www.julius-kuehn.de

# **Combining resistances**



