Establishment of anthracnose disease resistance of maize by RNA interference and site-directed mutagenesis

Krishna Mohan Pathi Plant Reproductive Biology IPK, Gatersleben

Importance of Maize (Zea mays)

- Maize is one of the four most important crops world-wide
- Queen of cereals to its high genetic yield potential
- Consumed directly as food, feed for livestock
- Industrial raw material
- 75 Million t annual yield loss caused by plant pathogens
- Colletotrichum graminicola (Hemibiotrophic fungus)
- Anthracnose disease (yield losses 40% to 80%)

http://www.agroatlas.ru/en/content/diseases/Zeae/Zeae_Colletotrichum_zeae http://cropwatch.unl.edu/2016/ear-and-stalk-rot-diseases-becoming-more-common-corn-fields

Wide range of anthracnose disease

http://www.oisat.org/pests/diseases/fungal/anthracnose.html , https://www.forestryimages.org/browse/detail.cfm?imgnum=1572820 , https://hortnews.extension.iastate.edu/2009/11-11/bitterrot.html

Infection process

https://chrishammang.com.au

Maize anthracnose phenotypes

- Leaf blight
 - oval shaped, yellowing, water-soaked lesions on the leaves
 - occurs during early plant development stages
- Top die-back
 - necrosis of the top leaves and stalk
 - prominent after tasseling or later during the grain fill period

- Stalk rot
 - blackening of the pith tissue in the stalk
 - much delayed generative development

Bergstrom und Nicholson 1999

- Fungal diseases can be controlled by resistance breeding or chemical protection
- Resistance provided by most R-genes as well as administration of fungicides are no durable solutions
- Fungal point mutations can be sufficient to render fungicides ineffective
- Fungal tolerance can also rest upon efflux transporters genetically adapted to fungicidal drugs
- <u>Host-induced gene silencing (HIGS) may confer durable plant resistance</u>
- Knockout of plant susceptibility (*Zm lox-3*) factor with RGEN

Major features of HIGS appoaches

- RNA interference (RNAi)-based process
- Plant-made small RNAs silence gene-specific transcripts after being taken up by a pest or pathogen
- Established principle of plant's pathogen control as exemplified for nematodes, insects and fungi
- Acts at the transcriptional level, i.e. no formation or modification of a protein or metabolite required
- Can still address fungicide resistant pathovars

HIGS targets and its functions

- Genes encoding fungicide targets are potential HIGS targets
- Boscalid: succinate dehydrogenase inhibitor
- Benomyl and carbendazim: β-tubulin inhibitors
- Succinate dehydrogenase (SDH)
 - act in citric acid cycle and electron transport chain
 - oxidates succinate to fumarate
 - reduces ubiquinone to ubiquinol
- β-Tubulin
 - essential for cell division, cell shaping
 - multiple further functions

https://en.wikipedia.org/wiki/Succinate_dehydrogenase https://en.wikipedia.org/wiki/Tubulin

HIGS target sequences and transformation constructs

 5´ UTR regions of both fungal genes showed sufficient sequence diversity from their orthologs of the host genome

- The 5'-untranslated regions of SDH1 (117 bp) and ßTUB2 (100 bp) were thus chosen as target sequences
- The generic <u>HairPin (HP) vector contains sense and antisense sequences from a target gene connected by intron</u>
- HP constructs result in formation of dsRNA which triggers post-transcriptional gene silencing

RNAi constructs used for maize transformation

 To produce sufficient amounts of siRNA, three repeats of the 117 bp target sequence were integrated into the modular binary vectors IPKb009 and IPKb027

Maize genetic transformation method

The transformable Hi II hybrid was transformed by our standard protocol

Hensel et al, 2009, Int. Journal of Plant Genomics

Current state of transformation experiments

Vector name	No. of embryos agro-infected	No. of plants produced	Regeneration Efficiency (%)	Transformation efficiency (%) (PCR for selectable marker)	Transformation efficiency (%) (PCR for both inverted repeats)
pNB96	107	5	4.6	4.6	4.6
pNB97	145	34	23.4	22.7	6.8
pNB98	87	28	32.1	32.1	11.4
pNB99	110	0	0	0	0

Summary & Outlook

- *SDH*-1 and *TUB-2* specific hairpin constructs designed and cloned
- Transgenic maize plants generated
- Presence of gene of interest and plant selection marker confirmed
- pNB99 vector used in yet another transformation experiment

- Segregation analysis of T1 plants under progress
- Conduct Colletotrichum infections assays

Knockout of susceptibility factor *ZmLOX-3* using gRNA/Cas9-mediated mutagenesis

Plant lipoxygenases

- 9-Lipoxygenase (ZmLOX3) acts as susceptibility factor for Colletotrichum graminicola
- ZmLOX3 enzyme produces oxylipins
- Plants produce oxylipins as signal to defend against abiotic stress, pests and pathogens
- In fungi, oxylipins are potent regulators of mycotoxin biosynthesis and sporogenesis
- Pathogens recruit the host (plant) oxylipin pathway to facilitate pathogenesis and reproductive development
- Loss-of-function mutations of ZmLOX3 reduce susceptibility
- Project aim: knockout of ZmLOX3 via site-directed mutagenesis

- Microbial defense mechanism, protect against foreign DNA from viruses by cleaving sequence-specific manner
- Emerged as a promising tools for plant genome engineering
 - deletion of detrimental traits or addition of significant characters
 - generate transgene-free mutant plants
- RGEN system is simple, efficient and versatile
 - with multiple gRNAs can edit multiple target genes simultaneously
 - easily reprogrammable by changing the guide RNA sequence

New Molecular Biology Tool: Cas Endonucleases

Cas9

New Molecular Biology Tool: Cas Endonucleases

Site-directed mutagenesis using RNA-guided Cas9 endonuclease

correct

erroneous

...C T T A C C T C A T C G C C A A G C T G G C A C C C T T G **T T - A** A G C G G A C A G C A A T A C C G A A T G G A A G T G... ...G A A T G G A G T A G C G G T T C G A C C G T G G G A A C **A A - T** T C G C C T G T C G T T A T G G C T T A C C T T C A C...

Any genomic sequence of choice can be mutated in planta.

Guide RNA design and cloning

- *Zm LOX3* has 7 exons
- Guide RNAs are designed to target the first exon

gRNA/Cas9 constructs for maize transformation

Maize transformation using Hi II hybrid

Cas9-mediated mutagenesis of maize *ZmLOX3*

Screening of primary transgenic (T₀) plants

- MH50_25i CATCGACGGGGCTGACGGGGGGGGGGGAACAAGCAGCGGGGGCTCAAGGGGCAGGTGGTGCTCATGCGCAAGAACGTG +1
- MH50_26a CATCGACGGGGCTGACGGGGGGGGGGGAACAAGCAGCGCGGCTCAAGGGCA

Summary of Cas9 induced mutations

Frequency of types and lengths of alterations

Mutation per varient

Summary of transformation experiments

	gRNA-2	gRNA-3	gRNA-4
No. of immature embryo inoculated	118	140	116
Regenerants tested for the presence of T-DNA	6	88	37
PCR-positive plants (Presence of CAS9)	6	88	37
Plants used to sequence the target	6	88	37
Plants with conclusive target sequence	6	85	36
Plants without mutated target	0	0	0
Mutated plants	6	85	37
No. of independent mutational events	3	6	3

Summary & Outlook

- Transgenic maize mutant plants generated
- Detailed mutation analysis in progress

- Production of progeny to achieve homozygosity of mutated alleles
- Validation of homozygous mutant plants vs. WT maize for resistance
 - infection assays using leaf explants and whole plants
 - microscopic validation
 - estimation of fungal development by qPCR

Working Model

Acknowledgments

Dr. Jochen Kumlehn Dr. Nagu Budhagatapalli

Heike Büchner Andrea Müller Ingrid Otto

All PRB group members

Prof. Dr. Holger B. Deising Maximilian Groß

Phytopathology & Plant Protection MLU Halle-Wittenberg

Thank you

