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ABSTRACT
For thousands of years, humans have been improving crops to better suit their needs. These
enhancements are driven by changes in the genetic makeup of the plant. While this was ini-
tially unintentional, there has been a steady push to increase the pace and precision of crop
breeding, something that has occurred alongside a growing understanding of genetics and an
escalating capacity to thoroughly assess genomes at the molecular level. With the advent and
rapid uptake of molecular breeding techniques, such as transgenics and genome editing over
the past few decades, there has been much trepidation regarding the possibility of off-target
effects derived from unanticipated mutations at loci other than those intended for alteration,
and the unintended risks that this might confer. These concerns persist regardless of the fact
that a growing number of studies indicate that the occurrence of off-target mutations derived
from newer biotechnological breeding techniques are negligible compared to what is
observed with many conventional breeding approaches, and even spontaneously from one
generation to the next. Given the impending food security crisis that we are facing in the
short-term, there is a critical need to implement a wide range of breeding tools as a means of
meeting growing demand, withstanding climate change-related pressures, increasing nutri-
tion, and providing environmental benefits. While food safety is clearly of the utmost import-
ance, now is certainly not the time to prevent the use of particular breeding technologies
based on unfounded doubts. Therefore, in this review, we attempt to shed light on these
apprehensions by putting purported “risks” into the context of plant breeding as a whole by
comparing frequencies of spontaneous mutations with those (both anticipated and unantici-
pated) that occur through various conventional and biotechnological breeding approaches,
including transgenics and genome editing. We then consider how these changes may, or may
not, translate into unanticipated risk, and discuss the current global regulatory asynchrony sur-
rounding genome edited crops.

KEYWORDS
Crop improvement; food
security; genome editing;
off-target effects; plant
breeding; unintended risk

I. Introduction

It is predicted that our global population will increase
from approximately 7.7 billion to 9.7 billion by the
year 2050 (United Nations Department of Economic
and Social Affairs, 2017). Together with a rising need
for plant-based renewable resources and our ever-
growing per capita calorific consumption (Tilman and
Clark, 2015), this will translate into a substantial ele-
vation in demand for crop-derived products. With
more than 800 million people already chronically hun-
gry and 2 billion suffering micronutrient deficiencies
(FAO, 2017), it is clear that without substantial

increases in crop production, this deficit in food
security will continue to expand. Although reducing
food waste and equalizing global food distribution
would go a long way toward meeting demand in the
future, increasing crop yields is also critical since there
is little, if any, room for expansions in arable land
area (Bruinsma, 2009; Jansson et al., 2018). Indeed, it
is proposed that we will need to achieve an approxi-
mately 50% increase in crop productivity by 2050,
compared with 2010, just to support human food-
related needs (Gouel and Guimbard, 2019; Matthews,
2019). Such a feat will be challenging in and of itself;
however, factors such as water scarcity, climbing
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fertilizer costs and additional regulatory restrictions
on their use will impede these efforts even further.
Moreover, climate change-related environmental fac-
tors, such as increased temperatures, augmentation in
weather variability and the intensity of extreme wea-
ther events, and shifting disease/pest outbreaks are
known to instigate both yield and nutritional penalties
in many crop species (Deryng et al., 2014; Scheelbeek
et al., 2018; Schleussner et al., 2018; Asseng et al.,
2019). These negative effects are already evident in
parts of the world (e.g., Ali et al., 2017; Ray et al.,
2019), and will only worsen as climate change esca-
lates. In addition to the clear food security crisis that
we are facing, we are also seeing an erosion in trad-
itional farming knowledge with an increasing number
of farmers moving away from this occupation due to
diminishing returns. Therefore, in order to ensure a
sufficient supply of food during a period when consid-
erable environmental changes are predicted to occur,
there is an urgent need for the development of high-
yielding, climate change-tolerant, nutrient-rich and
environmentally-friendly crop cultivars that are profit-
able to farmers.

Plant breeding in a broad sense involves a human-
led shift in plant evolution to improve traits that are
beneficial specifically to us, typically in the context of
either cultivation or our preferences. It could be
argued that the first human-led crop improvement
endeavors began approximately 10,000 to 13,000 years
ago during the initiation of domestication (reviewed
by Purugganan and Fuller, 2009; Figure 1). Prior to
this time, plant genomes, like those of all other living
organisms, had been evolving through the occurrence
of spontaneous genetic alterations for better surviv-
ability. Those genetic changes that conferred traits
that enhanced the plant’s ability to survive and adapt
were maintained by the species, while those that did
not either accumulated through genetic drift or were
eliminated through natural selection (reviewed by
Saini et al., 2020). During the conversion from a
nomadic lifestyle to one that was more sedentary,
humans harnessed this natural evolution of plant spe-
cies, and altered its course by selecting, and then
propagating, plants with traits that facilitated agricul-
ture, such as a reduction in the dispersal of seeds and
fruits, alterations in plant phenology and morphology,
and palatability (e.g., Meyer and Purugganan, 2013;
Berger et al., 2017). In practice, traits selected during
domestication sometimes opposed those favored dur-
ing natural selection (Hillman and Davies, 1990), and
in 1859, Charles Darwin coined the term “artificial
selection” to make the distinction between selection

that occurred “in nature” and that which derived
from human activities (Darwin, 1859). Domestication
has led to profound changes in the crops that we
grow currently compared to their wild progenitors;
changes that would have almost certainly never have
taken place without the intervention of humans
(reviewed by Custers et al., 2018). While this process
was essential to agriculture as we know it today, it
unfortunately also led to a reduction in genomic
diversity (Cowling et al., 2009; Gross and Olsen, 2010;
Olsen and Wendel, 2013), as well as a narrowing of
food crop species, which have contributed to agricul-
ture’s vulnerability to climate change and disease/pest
outbreaks (reviewed by Sm�ykal et al., 2018).

Domestication and other early breeding endeavors
were achieved without any theoretical knowledge of
genetics. However, the discoveries of Gregor Mendel
in relation to how traits (phenotypes) were transferred
from parents to offspring through genes transformed
plant breeding in the 20th century (Figure 1; Hoßfeld
et al., 2017), and it has been strongly influenced by
scientific progress ever since. Due to the slow rate at
which spontaneous mutations occur, the unpredictable
nature of their manifestation, and the crucial need for
genetic variability for breeding success, all breeding
innovations since then have centered on a desire to
increase the pace and/or precision of such efforts,
along with an impetus to broaden genetic diversity in
crop species (Figure 2). For example, while traditional
breeding has maintained genetic gains in most cereal
crops where grain quality holds importance, in other
cereals such as corn, the development of hybrids has
brought higher genetic gains. George Harrison Shull
coined the term “heterosis” in the early 1900s to
describe the vigor displayed by F1 hybrids of genetic-
ally diverse corn lines (Shull, 1908), resulting in an
almost complete shift to the cultivation of hybrids in
the US Midwest by the late 1930s. This practice
resulted in large yield gains at the time, and continues
to this day in crops that are capable of forming
hybrids as a means of obtaining vigorous crops that
are more stress tolerant, synchronized in flowering
and higher yielding. Similarly, the discovery of muta-
tion breeding using ionizing radiation in the late
1920s (Stadler, 1928a, 1928b), and later using chemical
mutagens such as ethyl methanesulfonate (EMS; e.g.,
Neuffer and Ficsor, 1963), allowed an extremely large
number of mutations to be induced in plants in a
short period of time. This conventional breeding tech-
nology provided an important component of the sub-
sequent Green Revolution during the 1960s, largely
led by Norman Borlaug, whereby sizeable increases in
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yield were achieved primarily in wheat, rice and maize
through the development of germplasm with a high
harvest index that responded to increased rates of irri-
gation and fertilizers (reviewed by Llewellyn, 2018;
Vietmeyer, 2010).

Although rates of yield gain for cereal crops (both
hybrid and nonhybrid) were relatively high between

the 1960s and 1990s, they are increasingly difficult to
sustain under sub-optimal farming conditions
(Brisson et al., 2010; Ray et al., 2012; Hall and
Richards, 2013) and targeted crosses between elite
germplasm to maintain quality often comes at the
cost of performance stability across different environ-
ments. The advent of genomics- and molecular-

~8,000 BCE

1865

1928

1983

1994

2000

2013

Identification of principles of inheritance by Gregor Mendel

First instance of mutation breeding in plants3

Beginning of the Green Revolution

Genetic markers applied to plant breeding8

Agrobacterium-mediated plant transformation developed7

Commercialization of first transgenic plant in US

Arabidopsis genome sequenced

CRISPR/Cas used in plants

1953 Discovery of the structure of DNA by Watson and Crick5

1700s Deliberate cross-breeding of plants initiated

1937 Discovery of colchicine for chromosome doubling4

Development of embryo rescue for interspecific crossing2
1925

1922 Development of plant tissue culture1

1972 First use of protoplast fusion in plants6

Humans begin domesticating plant species

1940s

1908 Description of heterosis in corn

Figure 1. Timeline of major events in crop breeding. BCE, Before the Common Era; CRISPR/Cas, clustered regularly interspaced
short palindromic repeats/CRISPR-associated protein; DNA, deoxyribonucleic acid; US, United States. References: 1Robbins, 1922;
2Laibach, 1925; 3Stadler, 1928 b; 4Blakeslee and Avery, 1937; 5Watson and Crick, 1953; 6Carlson et al., 1972; 7Caplan et al., 1983;
8Burr et al., 1983. Image sources: corn, John Doebley; hand pollination, tissue culture, wheat field, DNA fingerprinting, DNA
sequence, and gene editing obtained from iStock; Gregor Mendel, wikipedia; wheat embryos, Andriy Bilichak, Agriculture and Agri-
Food Canada; radiation, colchicine and double helix obtained from pngegg.com; protoplasts, Mnolf; petri dish, Udaya Subedi,
Agriculture and Agri-Food Canada – Dr. Stacy Singer; tomato, pngfuel.com.
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Figure 2. Schematic representation of common plant breeding techniques. A) Introgression breeding involves the crossing of two
plant genotypes, the selection of offspring with a desirable trait, and multiple rounds of backcrossing. B) Mutation breeding
involves the treatment of plant tissue with physical or chemical mutagens, selection of a genotype with a desirable trait from a
large mutagenized population, and multiple rounds of backcrossing. C) Transgenic, cisgenic and RNAi approaches involve the inser-
tion of an exogenous sequence of DNA into the plant genome, which results in the production of either a protein or double-
stranded RNA molecule, and consequently the improved trait. D) Simple NHEJ-based CRISPR/Cas gene editing involves the intro-
duction of Cas and sgRNA into plant cells, resulting in a double stranded DNA break at the target site and the subsequent gener-
ation of an indel at a precise genomic location, which leads to trait improvement. CRISPR/Cas, clustered regularly interspaced short
palindromic repeats/CRISPR-associated protein; DNA, deoxyribonucleic acid; RNAi, ribonucleic acid interference. Image sources:
plums, apricots, grapefruit, daffodils, bacteria, rice plant, potato plant, and apple tree obtained from Pixabay; radiation, scissors,
proteins, double helix and Cas obtained from pngegg.com; pluots, dreamstime; chromosomes, iStock; callus on media, Udaya
Subedi, Agriculture and Agri-Food Canada – Dr. Stacy Singer; citrus seeds, pixnio.com; greenhouse, Government of Newfoundland
and Labrador, Department of Fisheries, Forestry and Agriculture; Golden Rice, Golden Rice Project (www.goldenrice.org.); potato
blight, Ronald Hutten, Laboratory of Plant Breeding, Wageningen University – Dr. Henk Schouten; nonbrowning apple, webco-
micms.net; wheat immature embryos, derived from Hayta et al., 2019; protoplasts, Mnolf; gel image, Agriculture and Agri-Food
Canada – Dr. Stacy Singer; edited wheat, National Agriculture and Food Research Organization and Okayama University (for more
information, please refer to the following article: https://doi.org/10.1016/j.celrep.2019.06.090).
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assisted selection methods has enhanced breeding
efficiency (Parry and Hawkesford, 2012); however, the
targeted improvement of many traits, especially in
crops with large polyploid genomes, will require bio-
technological breeding tools to improve elite breeding
germplasm. Such contemporary breeding techniques
have tended to involve the over-expression of native
genes, the heterologous expression of foreign genes, or
the down-regulation of endogenous gene expression
and are considered “genetically modified” (“GM”) in
most countries (reviewed by Kamthan et al., 2016).
However, despite the promise of these strategies to
improve a vast number of traits in a wide selection of
crop species (e.g., Xiao et al., 2007; Driever et al.,
2017; Paul et al., 2017), and the exceptionally rapid
uptake of commercially available cultivars to date,
only a relatively small number of traits have made it
to the market thus far (reviewed by Qaim, 2016). This
hindrance in market acceptability has occurred as a
result of misconceptions concerning the breeding
technologies themselves, as well as the rigorous regu-
latory processes currently required prior to the com-
mercialization of such cultivars (e.g., Qaim, 2016;
Macnaghten and Habets, 2020).

To further increase the speed and precision of
improvement, and with the added benefit of poten-
tially minimizing concerns that surround the use of
transgenic plants, highly specific genome editing plat-
forms (including clustered regularly interspaced short
palindromic repeats/CRISPR-associated protein
[CRISPR/Cas]) have made substantial headway over
the past decade due to their capacity to elicit muta-
tions at specific, predefined genomic loci (reviewed by
Zhang et al., 2017; Songstad et al., 2017). A growing
number of countries are either in the process of
updating, or have already modernized, their regulatory
or policy frameworks to clarify the requirements for
products developed through genome editing. While
the vast majority have indicated that at least certain
genetic outcomes derived from genome editing will
not be considered “GM”, there remains global asyn-
chrony regarding the regulation of such plants, which
will almost certainly impact biotechnological innov-
ation and complicate trade in the future (Parrott
et al., 2020; Schmidt et al., 2020). In light of the short
timeframe before food demand is projected to exceed
supply in the midst of a climate change crisis, it is
clear that we are in urgent need of a new revolution
in crop biotechnology as a critical component of
ensuring food security in the future. In order to
achieve this, it is of the utmost importance that crop
breeders have access to a wide range of

complementary breeding technologies; a prerequisite
for which will be regulatory policies that are based on
scientific findings rather than political or emotional
sentiments, as well as an understanding that all of
these methods are simply different means of achieving
the same thing – genetic variations. In this review, we
will compare the types and propensity for mutations
derived spontaneously with those that occur through
traditional, induced mutagenesis, transgenic and gen-
ome editing breeding approaches. Furthermore, we
will put this into the perspective of how these changes
might translate into unanticipated risk, which may
help to inform regulatory and policy decisions related
to the commercialization of new crop cultivars in
the future.

II. Spontaneous genetic variation in plants

As environments change, organisms must adapt to the
new conditions or face the possibility of extinction.
For species to adapt, they require genetic variation.
Simply put, mutations are the ultimate source of all
genetic variation, and can include a wide variety of
changes, including single base pair substitutions and
small insertions/deletions (indels), as well as larger
changes such as whole genome duplications, large
insertions or deletions, chromosomal rearrangements
and inversions, horizontal gene transfer from unre-
lated organisms, and the replication/movement of
transposable elements (TEs), for example. If these
genetic alterations occur in the meristematic/germ
cells, they can then be shuffled into offspring via
recombination, providing the cornerstone for plant
evolution and adaptation (Figure 3).

A. Main mechanisms driving nucleotide level
mutations in plants

DNA can be damaged through endogenous processes,
the production of genotoxic metabolites, and exposure
to certain environmental factors, for example, and this
is a constant threat to organisms, including plants
(reviewed by Spampinato, 2017). As a result, plants
utilize various DNA repair mechanisms to preserve
genomic integrity and minimize potentially deleterious
effects; however, some of these repair processes are
themselves error-prone, and lead to mutations
(Gorbunova and Levy, 1999). For example, reactive
oxygen species, which often accumulate in response to
various types of stress, can cause various types of
DNA damage, including base alkylation or oxidation,
which when repaired leads to the production of a
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single nucleotide variation (SNV; Gill and Tuteja,
2010). Another means through which SNVs can occur
is through C to T transitions that arise from the spon-
taneous deamination of methylated cytosines (Zhou
et al., 2020), which are very common in plant
genomes and play a substantial role in epigenetic gene
silencing (Pikaard and Scheid, 2014).

Double-strand breaks (DSBs), which can be trig-
gered following exposure to certain chemicals, radi-
ation, and during DNA replication, are another type
of lesion that are highly mutagenic and often lead to
mutations following repair. The cellular enzyme
Spo11, which generates cuts along chromosomes to
facilitate recombination during meiosis (sexual repro-
duction), is a well-known cause of DSBs in plant cells.
While a small number of these DSBs lead to recom-
bination, the remainder are repaired using error-prone
mechanisms (Sanchez-Moran et al., 2007), and there-
fore every passage through reproduction results in a
number of DSB-induced mutations that exist within
progeny along with their recombined chromosomes.

Two main strategies are used by plant cells to
repair DSBs, and include the following: error-free
homology-dependent repair process (HDR) that is
active predominantly during the S/G2 phase of the
cell cycle in somatic cells and also during meiosis, as
well as the far more prevalent error-prone nonhomol-
ogous end-joining (NHEJ) pathways, which incorpor-
ate canonical NHEJ (C-NHEJ; active in all cell phases)
and microhomology-mediated end joining (MMEJ;

maximal activity in S phase of the cell cycle), for
example (Sfeir and Symington, 2015; Schmidt et al.,
2019). Unlike high fidelity HDR, which requires the
presence of a homologous template (typically a sister
chromatid) for repair, C-NHEJ requires no homolo-
gous sequences for repair and MMEJ only necessitates
small microhomologies of approximately 1–20 nt
flanking the break site. In the case of C-NHEJ-medi-
ated repair of DSBs, small indels are typically gener-
ated at the break site in the process, while MMEJ
generally yields deletions (Sfeir and Symington, 2015).

B. Major factors driving larger scale genetic
variation in plants

Larger structural variations in the form of polyploid-
ization, TE re-location and abundance, horizontal
gene transfer, and alterations in gene copy number or
presence/absence are also important sources of genetic
variation in plants (Gabur et al., 2019). Much of the
success of flowering plants is believed to have been
achieved through genome expansion, typically through
polyploidy and massive expansions in TE families, fol-
lowed by contraction (Puttick et al., 2015; Pellicer
et al., 2018). Polyploidy involves a whole genome
duplication, and can occur within a species spontan-
eously or following hybridization between two differ-
ent species. The end result of this is two or more
complete genomes within a single organism. Although
this process is rare, all flowering plants show

-GAGTCGTCTTTCAGCAGAACTCACGCTTCTACTGAA~  ~CACTACGGGCGCACTAGGTACTAGAACTACTCTTTCGACTTACA-

methyla�on methyla�on methyla�on methyla�on

DNA breaks
• Radia�on-induced
• Chemical-induced
• DNA replica�on error
• Endogenous enzymes – ex. Spo11

Transposable element (TE) inser�on
• Sequence disrup�on
• Target site duplica�on
• TE-gene fusion inser�on

TE excision
• Footprint of inserted bases
• Dele�on of flanking sequences
• DNA sequence rearrangement

Ectopic recombina�on
• Dele�on of DNA segments
• Chromosome fusions

Deamina�on of 
methylated cytosines
• C to T muta�ons

Over �me spontaneous DNA 
muta�on during reproduc�on 
can change genes and their 
expression leading to changes in 
plant growth and response to 
environment. Such muta�ons 
were important for 
domes�ca�on and are necessary 
for breeding.

Other DNA changes
• Recombina�on
• Small inser�ons
• Small dele�ons
• Base changes
• Gene duplica�on
• Genome duplica�on - autopolyploidy
• Hybridiza�on and duplica�on – allopolyploidy
• Horizontal gene transfer

Figure 3. Means by which DNA mutations are incurred spontaneously in plants. Although many naturally occurring mutations
have no observable effect on plant growth and appearance, some do, and it is these that are important for plant adaptation and
the breeding of new crop cultivars using traditional techniques. DNA, deoxyribonucleic acid; TE, transposable element.
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signatures in their genomes of several past polyploidy
events (Wood et al., 2009) and most of our important
crops are polyploid (Renny-Byfield and Wendel,
2014). Wheat, for example, is a recent polyploid with
three distinct subgenomes, while maize is the result of
a more ancient event where genome fractionation and
subgenome dominance has greatly reduced the overall
genome content from its initial polyploid state
(Schnable et al., 2011; Renny-Byfield et al., 2017).

TEs make up a large proportion of plant genomes,
with maize and wheat genomes consisting of approxi-
mately 85% TE-derived DNA (Schnable et al., 2009;
Wicker et al., 2018), while rice and soybean genomes
comprise 47% and 59% TE-derived DNA, respectively
(Schmutz et al., 2010; Jiang and Panaud, 2013). These
TEs are very active in terms of their propagation over
time, “jumping” to and integrating in different loca-
tions within the genome. Although in many cases
they do not insert within genic sequences, there are
nonetheless many examples of gene disruption and
influence of nearby TE insertions on gene expression
(Hirsch and Springer, 2017). Some examples of
important traits caused by TEs are the single stock
growth habit in maize, fruit flesh color in citrus, fruit
color in grape, tolerance to preharvest sprouting in
wheat and barley, and fruit shape in tomato (Singh
and Singh, 2012; Lisch, 2013; Singh et al., 2013). In
addition to TE-mediated gene disruption and changes
in gene expression, TEs are also known to mediate
gene duplications and fusions. This can occur through
the copy and reinsertion of genes alongside TEs, and
from the fusion of copied genes with other copied
DNA. During the replication process of TEs, genes
can also be multiplied in the form of extra-chromo-
somal circular DNA, which can then reinsert into the
genome resulting in increased gene copy number.
Recently, these events have been linked to the amplifi-
cation of a 400-kb region containing the
5-ENOYLPYRUVYLSHIKIMATE-3-PHOSPHATE SYN
THASE (EPSPS) gene and 58 other genes leading to
herbicide resistance in Amaranthus palmeri (Molin
et al., 2020). Above and beyond all of these rather
large scale genetic modifications, TE excision is
imprecise, leaving behind small SNVs or indels, and
TE insertion is usually associated with a target site
duplication (Singh et al., 2006; Singh et al., 2012;
Wicker et al., 2016).

Although genome expansion through polyploidiza-
tion and TE bursts is easy to comprehend, genome
contraction through fractionation is less well-studied.
However, it appears that the main driver for this pro-
cess is most likely recombination, where ectopic

events lead to DNA deletion and shuffling (Li et al.,
in press). One possible consequence of genome frac-
tionation is that when genes are deleted in certain lin-
eages, presence-absence variation (PAV) among
lineages ensues. The extent of genome rearrangement
through genome expansion and contraction, as well as
TE activity, has been shown to be profound in plants
with genes changing positions along chromosomes
over time (Zhao and Schranz, 2019). Indeed, while
gene order along chromosomes (synteny) is highly
conserved in mammals, considerable disruptions are
evident in flowering plants, suggesting extensive DNA
perturbation through TE-mediated gene movement
and ectopic recombination, which all require DNA
breakage and repair.

In addition to genome expansion and contraction,
the spontaneous and stable introduction of exogenous
DNA through horizontal gene transfer from unrelated
organisms can also contribute to the evolution of
plant genomes (e.g., Fang et al., 2017). For example,
Agrobacterium tumefaciens is a naturally occurring
soil bacteria that normally induces abnormal root
growths through the delivery, genomic integration
and expression of specialized oncogenes present on a
tumor-inducing plasmid (Joos et al., 1983). Scientists
have leveraged this ability to transfer DNA into plant
cells by removing the oncogenes and replacing them
with genetic elements encoding agronomic traits of
interest (reviewed by Lemay and Moineau, 2020).
However, this transfer of DNA does not inherently
require human intervention, and spontaneous hori-
zontal gene transfer from A. tumefaciens to an ances-
tor of sweet potato has led to the presence of several
“transgenes” in this crop that are still intact and
expressed today. Indeed, there is even evidence that
these “transgenes” may have played a role during the
domestication of this crop (Kyndt et al., 2015).

C. Prevalence of spontaneous mutations in plants

Prior to the late 1960s, it was argued that there was a
wild type genome for each species, where a single gen-
ome existed without any mutations. This is now
known to be incorrect, and in actuality, each single
species is composed of many different genomes. The
human HapMap project highlighted this concept,
whereby genome-wide genetic variation in the form of
mutations can be seen in representative humans from
across the globe, outlining our long history of global
movement and migration (International HapMap
Consortium, 2005; International HapMap 3
Consortium, 2010). This is also evidenced by the
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genetic variation observed within individual plants of
the same cultivar (e.g., Haun et al., 2011; Yates et al.,
2012; Mercati et al., 2016), which derives from de novo
spontaneous mutations and the segregation of hetero-
zygous loci during reproduction. In two individuals of
the soybean “Williams 82” cultivar, for example, 1,838
SNVs were identified between exomes, while 25 genes
were found to be differentially present/absent (Haun
et al., 2011). However, the prevalence of such intra-cul-
tivar genetic heterogeneity can differ substantially from
species to species depending on their mating strategy
(for example selfing, outcrossing or asexual) and level
of homozygosity (Haun et al., 2011), with the lowest
levels of heterogeneity expected to occur in crops that
are propagated asexually.

For species to adapt, an intermediate spontaneous
mutation rate is thought to be optimal since high
mutational loads have the potential to erode import-
ant information. In humans (genome size of �3,100
Mbp), spontaneous mutations lead each of us to pos-
sess around 60 mutations that were not present in our
parents (Pennisi, 2018). In plants, the number of
spontaneous mutations that occur per generation
varies depending on several factors, including genome
size/ploidy level; however, SNVs tend to occur at rates
of �10�8 to 10�9 mutations per site per generation
(reviewed by Graham et al., 2020), which is similar to
estimates in humans (Roach et al., 2010). For
example, in the model species, Arabidopsis thaliana
(genome size of �135 Mbp), it has been estimated
that 1-5 de novo spontaneous mutations occur per
generation per diploid plant (Table 1; Ossowski et al.,
2010; Willing et al., 2016; Weng et al., 2019). This
number tends to be higher in plants with larger
genomes, and in rice for instance (genome size �430
Mbp), an average of 23 SNVs and 18 indels have been
estimated to arise from parents to progeny (Table 1;
Tang et al., 2018).

However, these estimates are likely often underre-
presentations overall since highly repetitive regions of
the genome are difficult to assess, which means that
only a proportion of mutations within a genome are
identified in cases where de novo assemblies of whole
genome sequencing data are not carried out. In add-
ition, these studies were carried out under controlled
growth conditions, and therefore do not take into
account the substantial acceleration of de novo genetic
variation from one generation to the next that occurs
under stress conditions, such as elevated temperatures
or salinity, that are typically encountered in the field
(DeBolt, 2010; Jiang et al., 2014). Regardless of the
exact numbers of both small and large scale genetic

alterations that take place from generation to gener-
ation in plants, an understanding of the fact that
mutations occur naturally and create the genetic vari-
ation that has been of utmost importance for the
adaptation of all species is crucial when considering
crop genomics.

III. Genetic alterations in the context of
“conventional” breeding

A. Introgression through crossing

Many traditional plant breeding platforms rely upon
the presence of existing genetic variation, which has
occurred spontaneously in plants over many years, to
elicit improvements in traits using methods such as
crossing and selection. The most commonly used
traditional breeding method involves the introgression
of a gene(s) responsible for a desired trait into a crop
cultivar from another plant of the same species via
intraspecific crossing, or from another species or even
genera through interspecific and intergeneric hybrid-
ization, respectively (e.g., reviewed by Schnell et al.,
2015; Katche et al., 2019). While intraspecific crossing
is a rather straightforward process, the more distant
the phylogenetic relationship between two parent
plants, the more difficult their hybridization becomes
due to various barriers. As such, an assortment of tis-
sue culture-dependent technologies, including somatic
hybridization (often through protoplast fusion; Tiwari
et al., 2018), embryo rescue (Sharma et al., 1996) and
chromosome doubling (Van Tuyl and De Jeu, 1997),
are commonly used to successfully achieve these out-
comes. Such crosses have also been prevalent in the
domestication of many crop species, and the domesti-
cation of bread wheat, for example, has involved not
only a whole genome duplication event and an inter-
generic cross between wild goatgrass (Aegilops tau-
schii) and domesticated emmer wheat (Triticum
dicoccon; Gornicki and Faris, 2014), but also intro-
gressions from wild related and unrelated species (e.g.,
Ali et al. 2016; Rahmatov et al., 2016; Fedak
et al., 2017).

Introgression through crossing or hybridization is
inherently random and not only the gene(s) of interest
will be introgressed into progeny, but also many other
genes, including those associated with large regions of
linked DNA that surrounds the desired gene.
Unfortunately, such genes can encode mildly unfavor-
able traits, resulting in a phenomenon termed “linkage
drag” (e.g., Vikram et al., 2015). Multiple rounds of
extensive backcrossing with the original parental culti-
var followed by selection can eliminate introgressed
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DNA associated with detrimental traits that is
unlinked to the gene of interest. This process can also
slowly reduce the size of linked introgressions; how-
ever, linked regions can still be hundreds of kilobases
to tens of megabases even in elite cultivars (e.g.,
Ballini et al., 2007; Lin et al., 2014; Calafiore et al.,
2016; Li, Chitwood, et al., 2018; Lobaton et al., 2018).
For example, in cultivated rice, an introgression bear-
ing a gene that provides resistance to blast disease
also includes at least 185 other putative genes with
more than 100 different potential functions (Ballini
et al., 2007). Similarly, modern wheat varieties contain
disease resistance genes from dozens of species
belonging to six distinct genera, and in some cases
entire chromosomes or chromosome arms made up of
megabase pairs of DNA were introgressed along with
the resistance gene (Jones et al., 1995). In any case,

despite the fact that the required backcrossing is a
very lengthy process, and the substantial challenge
that linkage drag presents, introgression has played a
critical role in the history of today’s crop cultivars
(e.g., Hajjar and Hodgkin, 2007).

In order to accelerate the pace of traditional breed-
ing, marker- and genomics-assisted breeding platforms
have been developed in recent years (Jiang, 2015;
Leng et al., 2017), which has allowed the large-scale
mapping of agronomically-important quantitative trait
loci (QTL)/genes, mining for elite alleles, and high-
throughput genotyping. These approaches do not
change the breeding outcome in terms of genetic con-
sequences because the method of achieving the
desired trait (typically introgression) remains the
same. Instead, these strategies are simply used to
increase the efficiency of the selection process by

Table 1. Examples of approximate ranges in genetic variability derived spontaneously and from various breeding methods as
determined by whole genome sequencing in rice and Arabidopsis.
Type Arabidopsis (�135Mb) Refh Rice (�430Mb) Ref

Between generationsa � 1–5 SNVs and indels 1,2 � 41 SNVs and indels 16
Intra-varietalb � 1,200–4,700 SNVs

� 1,300–3,600 indelsf

� 390 larger variationsg

3–5 � 23,000–110,000 SNVs
� 9,100 indels

17, 18

Inter-varietalc � 350,000–790,000 SNVs
� 44,000–210,000 indels
� 2,300–53,000

larger variations

3, 5,
6–9

� 25,000–2,500,000 SNVs
� 1,400–470,000 indels
� 15,000–17,000

larger variations

17, 19–28

Tissue culture � 9–65 SNVs
� 2–6 indels
� 0 larger variations

10 � 67–37,000 SNVs
� 12–17,000 indels

16, 19, 29–31

Radiation � 5–75 SNVs
� 3–44 indels
� 0–21 larger variations

11, 12 � 21–630,000 SNVs
� 0–70,000 indels
� 0–11,000

larger variations

28, 32–39

Chemical mutagen � 460 SNVs 13 � 1,500–26,000 SNVs 40, 41
Transgenicd � 0–3 SNVs

� 0–4 indels
� small deletions and filler

at T-DNA junctions
� rare SVs flanking T-DNA
� very rare T-

DNA splinters

14 � 80–490 SNVs
� 22–360 indels
� small amount of filler at

T-DNA junctions
� rare translocations

or deletion

21,30, 42

CRISPR/Case � indel at target location
� very rare translocation

at target site
� 0 off-target mutations

4, 15 � indel at target location
� 0–10 off-target

mutations (off-targets
only found for very
small number
of sgRNAs)

16, 17

aFrom parent to progeny.
bBetween plants of the same variety/cultivar/accession.
cBetween plants of different varieties/cultivars/accessions (conventionally bred) of the same species.
dDerived from Agrobacterium-mediated transformation. While transgenic Arabidopsis plants were produced in a manner that did not involve tissue culture
(via floral dip), mutations found in rice transformants include those occurring as a result of somaclonal variation.

eOff-target mutations were assessed by screening sites bearing an appropriate PAM.
fThe length of insertions and deletions considered as indels varies among studies.
gLarger variations refer to copy number variations, and structural rearrangements such as large deletions, duplications, inversions or translocations.
hReferences: 1Ossowski et al., 2010; 2Willing et al., 2016; 3Uchida et al., 2011; 4Feng et al., 2014; 5Ossowski et al., 2008; 6Gan et al., 2011; 7Lu et al., 2012;

8Kasulin et al., 2017; 9Pucker et al., 2016; 10Jiang et al., 2011; 11Belfield et al., 2012; 12Kazama et al., 2017; 13Tabata et al., 2013; 14Schouten et al., 2017;
15Peterson et al., 2016; 16Tang et al., 2018; 17Zhang, Wang, et al., 2014; 18Xu et al., 2011; 19Qin et al., 2018; 20Du et al., 2017; 21Kawakatsu et al., 2013;
22Park et al., 2019; 23Takagi et al., 2013; 24Yamamoto et al., 2010; 25Arai-Kichise et al., 2011; 26Arai-Kichise et al., 2014; 27Jeong et al., 2013; 28Zhang,
Sun, et al., 2020; 29Zhang, Zhang, et al., 2014; 30Wei et al., 2016; 31Miyao et al., 2012; 32Li, Numa, et al., 2019; 33Hwang et al., 2020; 34Li, Shimizu, et al.,
2019; 35Cheng et al., 2014; 36Zhenga et al., 2017; 37Zheng, Li, et al., 2020; 38Li, Zheng, et al., 2016; 39Yang et al., 2019; 40Sevanthi et al., 2018; 41Abe,
Takagi, et al., 2018; 42Kashima et al., 2015.
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enabling the selection of a specific genetic variation
that is known to be associated with a desired trait,
rather than selecting for the trait itself. This means
that the initial screening of large populations can be
carried out in a high-throughput manner without any
need to assess a specific growth stage or response to
environmental conditions, or to carry out technically
challenging physiological/biochemical assessments.
This can be particularly useful in the context of back-
crossing (Jiang, 2013), and allows for selection of the
allele eliciting the desirable trait, selection for other
desirable traits in the recurrent backcross genotype, or
selection against the undesirable genome of the donor
parent to hasten the elimination of undesirable genes
(e.g., Soto-Cerda et al. 2013; Pratap et al., 2017).
Similarly, the development of other technologies has
also led to accelerations in traditional breeding. For
example, the production of doubled haploids has
become an important tissue culture-requiring compo-
nent of many traditional crop breeding programs that
allows for the immediate production of completely
homozygous lines (reviewed by Lenaerts et al., 2019).

While there is a relative paucity of information
regarding the precise genetic changes that have
occurred as a result of traditional breeding
approaches, there is growing evidence to suggest that
they have been incredibly widespread (e.g., Ballini
et al., 2007; Lin et al., 2014; Anderson et al., 2016;
Sun et al., 2018). An accumulation of spontaneous
mutations over many generations, along with intro-
gressions into elite cultivars via traditional breeding,
has led to a remarkable amount of genetic diversity
within any given plant species, including SNVs lead-
ing to amino acid changes, protein truncations, aber-
rations in splicing and changes in transcriptional
regulation, as well as transposon insertions, large dele-
tions, and the introduction of entire genes (Olsen and
Wendel, 2013). Wide crosses can lead to even more
substantial genetic consequences than intraspecific
crosses, including genome rearrangements, transloca-
tions, recombination and chromosomal elimination
(Liu and Li, 2007; Du et al., 2008; Xu et al., 2011).

Furthermore, since tissue culture is utilized as an
essential step for plant regeneration across a wide
range of traditional breeding methods, additional
mutations resulting from somaclonal variation, which
derives from genetic changes incurred during plant
growth in tissue culture (Evans, 1989), can also be evi-
dent. Somaclonal variation can lead to genome-wide
SNVs, indels, variations in chromosome number,
chromosome rearrangements, the activation of trans-
posable elements, and epigenetic alterations (Karp and

Maddock, 1984; Lee and Phillips, 1987; Jiang et al.,
2011; Miguel and Marum, 2011). In rice, mutations in
the range of tens to tens of thousands of SNVs and
indels per individual plant have been observed follow-
ing tissue culture (Miyao et al., 2012; Zhang, Wang,
et al., 2014; Wei et al., 2016; Qin et al., 2018; Tang
et al., 2018). Similarly, between 9 and 65 novel homo-
zygous SNVs and 2–6 homozygous indels have been
discerned in the R1 generation compared to its pro-
genitor plant in Arabidopsis (Jiang et al., 2011). In
line with this, mutation rates following tissue culture
tend to be 1–2 orders of magnitude higher than spon-
taneous mutation rates across plant species in general
(e.g., Jiang et al., 2011; Tang et al., 2018; Park et al.,
2020); however, rates can differ quite dramatically
depending on various factors related to in vitro cul-
ture conditions and the length of culturing itself
(Table 1).

Given that traditional breeding can elicit substantial
genetic changes during the development of new crop
cultivars, and spontaneously-derived genetic variation
is prevalent in all species, it is not surprising that gen-
etic variation between traditionally-bred cultivars of
the same species can be immense. For example,
between approximately 25,000 to 9.8 million SNVs
and 1,400 to 1.4 million indels have been observed
between individuals of different cultivars/accessions of
soybean (Lam et al., 2010; Yadav et al., 2015;
Anderson et al., 2016), cotton (Li, Manghwar, et al.,
2019), sweet cherry (Xanthopoulou et al., 2020), maize
(Sun et al., 2018), rice (e.g., Subbaiyan et al., 2012;
Kawakatsu et al., 2013; Fu et al., 2016; Qin et al.,
2018; Wang, Mauleon, et al., 2018), and tomato
(Causse et al., 2013), respectively (Table 1). Indeed,
SNVs have been found to be present on average every
61–540 bp in maize, wheat, soybean, B. oleracea and
rice cultivars (Ching et al., 2002; Somers et al., 2003;
Van et al., 2005; Subbaiyan et al., 2012; Agnieska
et al., 2016; Fu et al., 2016; Golicz et al., 2016; Sun
et al., 2018), while indels have been estimated to occur
every 126–900 bp in maize lines (Ching et al., 2002;
Sun et al., 2018). Furthermore, larger structural rear-
rangements, including differences in the presence/
absence of certain genes among individuals within spe-
cies, are also typically widespread, with tens to tens of
thousands of such variations apparent between culti-
vars depending on the species (e.g., McHale et al.,
2012; Causse et al., 2013; Agnieska et al., 2016;
Anderson et al., 2016; Du et al., 2017; Sun et al., 2018;
Wang, Mauleon, et al., 2018; Xanthopoulou et al.,
2020; Zhang, Sun, et al., 2020). When comparing
two inbred lines of maize, for instance, roughly 180

CRITICAL REVIEWS IN PLANT SCIENCES 77



single copy genes were present in one inbred line but
not the other (Springer et al., 2009), while approxi-
mately 49 genes on average have been found to be
unique to individual wheat cultivars (Montenegro
et al., 2017).

B. Random mutagenesis

Although introgression through crossing has led to the
generation of a multitude of improvements in crop
species thus far, it has its limitations. These include the
relatively slow rate of occurrence for new spontaneous
mutations and a dependence upon hybridization com-
patibility between species. Furthermore, genetic vari-
ation does not always exist for certain traits of interest
in available germplasm (Meyer and Purugganan, 2013;
Bed}o and L�ang, 2015). As such, many of the newer
breeding technologies developed over the past
100 years have been aimed at mitigating these issues by
randomly re-introducing new genetic variability in a
rapid and random manner, including somaclonal vari-
ation and chemical/physical mutagenesis, which are all
considered conventional breeding approaches
(reviewed by Songstad et al., 2017).

As discussed previously, somaclonal variation elicits
increased mutation rates during in vitro plant tissue
culture. Above and beyond the use of tissue culture in
many traditional breeding platforms, this process has
also been used directly as a means of stimulating
improvements in agronomic traits, and at least 22
food crop cultivars, including rice, strawberry and
potato, have been derived from such an approach and
registered to date (FAO/IAEA mutant variety data-
base, https://mvd.iaea.org/). Similarly, for almost a
century, genetic variability within species has also
been rapidly increased through the treatment of plant
tissue with physical (e.g., ionizing radiation), chemical
(e.g., alkylating agents) or biological (e.g., transposon-
mediated) mutagens (reviewed by Jankowicz-Cieslak
and Till, 2015), followed by selection. As is the case
with traditional breeding methods, these platforms
can be based solely on phenotypic selection, or can
make use of molecular-assisted selection through a
process termed Targeting Induced Local Lesions in
Genomes (TILLING), whereby large mutant popula-
tions can be directly screened for mutations in a
desired gene(s) (Kumar et al., 2017).

Ionizing radiation, such as X-rays, gamma-rays,
fast-neutrons and heavy ion beams, can damage DNA
directly or indirectly through the production of
hydroxyl radicals, which then target DNA molecules
(Jo and Kim, 2019). The spectrum and frequency of

mutations observed with irradiation is highly depend-
ent on many factors, including the type, dose and lin-
ear energy transfer (LET) of the radiation, as well as
the plant tissue type used and treatment conditions
(Jo and Kim, 2019). High-LET forms of radiation,
such as fast neutrons and heavy ion beams, tend to
lead mainly to the production of DSBs, although sin-
gle-strand breaks (SSBs) and other DNA lesions can
also be evident (Hada and Georgakilas, 2008).
Conversely, low-LET forms of radiation such as X-
rays and gamma-rays typically result in a higher pro-
portion of SSBs and base or sugar lesions (Wallace,
1998). The repair of this DNA damage results in a
range of mutations, including deletions ranging in size
from tens to millions of base pairs, SNVs, and rear-
rangements at break sites (e.g., Shirley et al., 1992;
Ashikari et al., 2002; Morita et al., 2009), leading to
potentially novel alleles that may not have been avail-
able previously in the breeding population. Due to the
prevalence of DSBs, which are repaired mainly
through the error-prone NHEJ, high-LET irradiation
tends to elicit a greater proportion of indels than
SNVs compared to low-LET irradiation (Jo and Kim,
2019). Furthermore, high-LET irradiation also typic-
ally leads to larger deletions and more complex DNA
rearrangements than low-LET irradiation, which may
derive, at least in part, through the action of an alter-
native end-joining repair pathway in these instances
(Hirano et al., 2015). In rice, tens up to hundreds of
thousands of SNVs and indels, along with 0 to
approximately 11,000 structural variations (SVs), have
been observed per mutant plant following treatment
with ionizing radiation (Table 1; e.g., Cheng et al.,
2014; Zhenga et al., 2017; Li, Shimizu, et al., 2019;
Yang et al., 2019; Hwang et al., 2020).

The most commonly used chemical mutagen in
plant breeding is EMS, which selectively alkylates
guanine bases, resulting in mispairing with thymine
and primarily inducing G/C to A/T transitions
(Greene et al., 2003). Indeed, chemical mutagens in
general predominantly provoke single base substitu-
tions (Olsen et al., 1993; Xin et al., 2008; Satoh et al.,
2010) and often lead to mutation rates that are higher
than those observed following irradiation. While
EMS-mutagenized diploid plants often exhibit thou-
sands of SNVs per mutant genotype (Table 1; e.g.,
Mohd-Yusoff et al., 2015; Shirasawa et al., 2016;
Sevanthi et al., 2018), polyploid species can tolerate
higher numbers of mutations as a result of the pres-
ence of homologous gene copies, which serve to buffer
mutations in essential genes. While this means that
the populations required for mutation saturation can
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be much smaller than with diploid species, recessive
mutations in single homologs are less likely to exhibit
a phenotype in early generations (Parry et al., 2009).
In wheat and B. napus, for example, EMS-induced
mutations occur every 23–51 kb (Slade et al., 2005;
Wang et al., 2008; Dong et al., 2009; Uauy et al.,
2009; Chen et al., 2012), which can lead to tens of
thousands to hundreds of thousands of mutations
throughout the genome of each mutant plant (e.g.,
Wang et al., 2008; Hussain et al., 2018).

Differences in chemically/physically-induced muta-
tional frequencies noted among studies are likely due
to species-specific disparities in DSB repair (Kirik
et al., 2000), variations in irradiation/treatment condi-
tions (Li, Shimizu, et al., 2019) and/or evaluation
method used. In any case, these approaches invariably
result in large numbers of unpredictable mutations,
most of which will be neutral, and some of which will
lead to positive and negative characteristics, respect-
ively. Therefore, as is the case with traditional crosses,
laborious and time-consuming backcrossing and selec-
tion steps are required to segregate out as many of
the unknown deleterious mutations as possible during
cultivar development (reviewed by Troadec and Pag�es,
2019). In addition, this mutational load poses a ser-
ious challenge in terms of identifying causal mutations
resulting in particular phenotypes, and therefore the
genetic alterations that have been elicited in even
commercially released varieties derived from mutation
breeding frequently remain unknown. Despite the
widespread genetic changes that result from chemical
and physical mutagenesis, these breeding strategies
have an exceptionally strong record of safe use and
have led to the release of approximately 3,300 varieties
to date, encompassing more than 100 major cereal,
grain legume, oil, fruit, nut and herb species (FAO/
IAEA mutant variety database). This includes several
well-known cultivars, such as Rio Red and Star Ruby
grapefruit, Shamrock apple, Illini Super Sweet corn
and various high-yielding semi-dwarf rice varieties.

IV. Targeted genetic manipulation via the
insertion of exogenous DNA

Conventional breeding approaches are complicated by
linkage drag, a lack of natural genetic diversity and
the polyploid nature of many crop species, which buf-
fers spontaneous and induced mutations. In an
attempt to overcome these issues, recombinant DNA
cassettes were successfully transferred into plant cells
using A. tumefaciens in the early 1980s (e.g.,
Hernalsteens et al., 1980; Hooykaas-Van Slogteren

et al., 1984). This paved the way for new breeding
platforms that allowed for the introduction of a spe-
cific desirable gene(s) that may not be available within
breeding populations, without the co-transfer of the
undesirable alleles that typically occurs during trad-
itional breeding (reviewed by Saini et al., 2020). By far
the most common form of this technology involves
the transfer of a genetic cassette (including a pro-
moter, coding sequence and transcriptional termin-
ator) from an unrelated organism(s) in a process
termed transgenesis, and this has formed the basis of
what we now consider “GM” crops. While the thought
of introducing a gene from one organism to another
is typically considered to be specific to “GM” crops,
such a phenomenon also occurs through the wide
crosses between distinct species and even genera that
often form part of traditional breeding programs in
many crops (e.g., Alvarez and Guzm�an, 2018), as well
as through spontaneous horizontal gene transfer,
which has, for example, led to the presence of
Agrobacterium-derived genes in cultivated sweet
potato (e.g., Kyndt et al., 2015; Fang et al., 2017).
Therefore, the term “GM” only encompasses a subset
of what are technically transgenic plants - specifically
those where recombinant DNA was used to elicit the
transfer of genetic material (Duensing et al., 2018).

Since the development of the first transgenic plants,
where a chosen coding sequence was expressed to
produce a protein leading to the trait of interest, or
an antisense version of the coding sequence was
expressed to down-regulate expression of the corre-
sponding gene, several other iterations of this technol-
ogy have been adapted for use in crop improvement.
RNA interference (RNAi)-mediated gene silencing for
example, is achieved through the introduction of a
genetic cassette expressing a small double stranded
RNA (dsRNA) hairpin that is homologous to a par-
ticular target gene. In cases where the homology
occurs within a coding region of the target gene, the
dsRNA triggers the post-transcriptional cleavage of
the cognate mRNA, whereas targeting of a promoter
region can suppress transcription, which both lead to
gene silencing (Sinha, 2010). Unlike transgenic plants
involving the heterologous expression of a chosen
gene, marker-free plants derived from RNAi do not
result in the production of a novel protein. To date,
several crop cultivars possessing RNAi-mediated traits
resulting from the down-regulation of endogenous
genes, including high oleic acid and low linoleic
acid soybean (VistiveVR Gold), low lignin alfalfa
(HarvXtraVR ), and nonbrowning apple (ArcticTM

apple), have been commercialized (Barros et al., 2019;
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Schiemann et al., 2019). A related technology termed
host-induced gene silencing (HIGS), whereby the
dsRNA specifically targets essential genes in pathogens
or pests, has also been used to stimulate disease/insect
resistance in host plants (Nowara et al., 2010; Mamta
et al., 2016; Tiwari et al., 2017).

Cisgenics, on the other hand, involves the transfer
of a gene (including its native promoter and transcrip-
tional terminator) or gene fragment from the species
itself or a closely related plant into the recipient crop
genotype. Similarly, intragenics also requires that only
genetic material from related species capable of sexual
hybridization is transferred into the recipient plant,
but new combinations of promoters, genes and termi-
nators are utilized (Holme et al., 2013). These two
platforms allow the exploitation of the same gene pool
that is available for traditional breeding purposes.
However, unlike the traditional breeding practice of
crossing through sexual hybridization, cisgenics/intra-
genics allows the introduction of the desirable gene
without any associated linkage drag, and can easily be
used to stack multiple traits into a single cultivar, thus
enhancing the pace and efficiency of breeding sub-
stantially. This approach can be especially useful in
plants that propagate vegetatively, such as apple,
potato and banana. While cisgenics/intragenics has
been used to generate potato resistant to late blight
(Haverkort et al., 2009), apple resistant to fire blight
(Kost et al., 2015), and barley with improved phytase
activity (Holme et al., 2012), for example, these have
yet to reach market. Progress is being made in this
field, however, and intragenic potatoes exhibiting mul-
tiple traits including low acrylamide and resistance to
bruising have now been commercialized (InnateVR and
InnateVR Generation 2; Waltz, 2015).

The generation of transgenic, cisgenic and RNAi
plants often (but not always) requires plant tissue cul-
ture for the introduction of the genetic cassette, which
can induce heritable genetic changes through somaclo-
nal variation. The introduction of an exogenous DNA
construct will also interrupt an endogenous sequence
of DNA, which typically occurs in a random manner
and can be genic or inter-genic in nature. In the case
of Agrobacterium-mediated introduction of the
exogenous DNA cassette, integration takes place at
existing DSBs through MMEJ repair (van Kregten
et al., 2016). During this process, small deletions rang-
ing from 11- to 100-bp are often elicited at the site of
integration (Forsbach et al., 2003), along with the
insertion of short filler DNA sequences at T-DNA
junctions (Wei et al., 2016; Schouten et al., 2017).
Novel SNVs are rare in transgenic plants, and it has

been suggested that most identified substitutions were
likely due to spontaneous or somaclonal mutations
rather than transformation (Kawakatsu et al., 2013;
Anderson et al., 2016; Park et al., 2019). However, it
is possible that this could differ based on the plant
species, SNV calling method and threshold, tissue cul-
ture conditions, transformation method, adjustments
for intra-cultivar heterogeneity, and the sample
number (Anderson et al., 2016). Similarly, structural
variations in transgenic plants derived from
Agrobacterium-mediated transformation have also
been found to be rare, occurring at rates that are two
orders of magnitude lower than those observed
between different cultivars of the same species
(Anderson et al., 2016). When they do occur, such
events have been suggested to result due to microho-
mology across DNA break points (Anderson et al.,
2016). Biolistic transformation of plants through par-
ticle bombardment, on the other hand, can provoke
widespread DSBs within the genome and fragmenta-
tion of the introduced DNA, although this is not
always the case. This can induce relatively large num-
bers of small regions of the introduced DNA being
integrated throughout the genome, along with struc-
tural variations including chromosomal truncations,
duplications, rearrangements or large deletions that
may be comparable in frequency to those induced via
irradiation with fast neutrons (Liu et al., 2019). While
insertion at multiple loci can also occur with both
Agrobacterium-mediated and biolistic transformation
(Olhoft et al., 2004; Liu et al., 2019), such events,
along with more complex rearrangements, are typic-
ally identified through molecular screening and/or
poor agronomic performance (Clark and Krysan,
2010), and these genotypes are discarded.

V. Precision editing of plant genomes

Meganucleases, zinc-finger nucleases (ZFNs), tran-
scription activator-like effector nucleases (TALENs)
and CRISPR/Cas all comprise distinct genome editing
tools for site-directed mutagenesis that can be used to
elicit DSBs at precise, predefined genomic sites in
many organisms, including plants (e.g., Bortesi and
Fischer, 2015; Mohanta et al., 2017; Songstad et al.,
2017; Graham et al., 2020). As is the case with other
sources of DSBs, those induced by genome editing
machinery are also repaired by the plant’s own DNA
repair mechanisms, which often provoke the creation
of a mutation at the targeted locus. Genome editing-
induced DSBs are typically repaired using either
error-prone NHEJ, which is the predominant route in
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the context of genome editing and typically leads to
the production of small insertions or deletions (indels)
that disrupt the targeted gene, or HDR processes
(Vats et al., 2019). Due to the fact that these muta-
tions are incurred through inherent DSB-repair mech-
anisms, many mutations induced via genome editing
are indecipherable from those occurring spontan-
eously or through conventional breeding methods;
however, the pace and precision with which they can
be achieved is incomparable.

While the general mechanisms driving all of these
site-specific nuclease-mediated genome editing plat-
forms are similar, as are their genetic outcomes,
CRISPR/Cas has become the most popular as of late
due to its user-friendliness, time-effectiveness, low
cost, remarkable versatility, and facility for targeting
multiple genes/gene copies simultaneously (Braatz
et al., 2017; van de Wiel et al., 2017; Figure 4). This
affords remarkable value for the breeding of many
polyploid crop species, which are difficult to improve
using conventional methods, and allows the gener-
ation of a range of heterozygous, monoallelic and bial-
lelic mutants, and a consequent allelic series of
phenotypes, in the first generation – something that is
typically not possible using conventional breed-
ing methods.

The potential of CRISPR/Cas as a tool for genome
editing was first demonstrated in 2012 (Jinek et al.,
2012), with successful targeted mutagenesis achieved
in a variety of other organisms, including plants,
shortly thereafter (e.g., Feng et al., 2013; Li, Norville,
et al., 2013; Nekrasov et al., 2013; Shan et al., 2013;
Xie and Yang, 2013). This technology was derived
from an RNA-mediated adaptive immune system in
bacteria and archaea, which protects mainly against
invading phages by integrating small DNA fragments
from the virus into their own genome, and then tran-
scribing them into short RNAs that act as recognition
signals to prevent subsequent attacks through the
cleavage of homologous viral DNA by Cas proteins
(Bortesi and Fischer, 2015). In its simplest form as a
genome editing tool, the CRISPR/Cas platform com-
prises a Cas nuclease, which is responsible for induc-
ing the DSB, along with a small, customizable,
noncoding guide RNA (gRNA) that specifically directs
Cas to the selected genomic locus. Most often, the
gRNA takes the form of a chimeric single gRNA
(sgRNA) that consists of an approximately 20-nt
CRISPR RNA (crRNA), which is complementary to a
target region (protospacer) and acts as a guide for the
Cas protein, as well as a fixed trans-activating
CRISPR-RNA (tracrRNA) that is required for the

recruitment of Cas. In order for Cas enzymes to suc-
cessfully cleave DNA, the crRNA component must be
designed to anneal immediately upstream of a short
protospacer adjacent motif (PAM). In the case of sys-
tems based on Cas9 from Streptomyces pyogenes,
which is currently the most widely used Cas protein
for genome editing in plants, the PAM sequence con-
sists of 50-NGG-30 (Jinek et al., 2012) and less fre-
quently ‘NAG’ (Meng et al., 2018), with cleavage
typically occurring approximately 3-nt upstream of
this site (Jinek et al., 2012). However, Cas9 enzymes
have been engineered to recognize different PAMs
(e.g., Gao et al., 2017; Hu et al., 2018), and other
types of Cas proteins with distinct PAM sequences
and cleavage characteristics have also been successfully
used to elicit mutations at targeted sites in plants. For
example, the Cas12a enzyme (previously known as
Cpf1), which requires a T-rich PAM sequence and
elicits cleavage distally and downstream of the PAM,
has been gaining popularity recently (Zetsche
et al., 2015).

Most commonly, Cas and sgRNA editing compo-
nents are introduced into plants through the use of a
plant binary vector and A. tumefaciens-mediated
transformation or particle bombardment, which like
transgenic/cisgenic/RNAi technology, results in the
stable insertion of a transgenic cassette into the plant’s
genome and often requires the use of tissue culture
steps (Sandhya et al., 2020). Although this approach
initially generates plants possessing “foreign” DNA,
the transgene is unlinked to the edit and in instances
where its presence is not required long-term, it can
therefore simply be segregated out while maintaining
the targeted edit. As a means of avoiding the produc-
tion of stable transgenic lines altogether, transgene-
free edited genotypes have also been produced
through the transient introduction of DNA or RNA
encoding Cas/sgRNA into plant cells, followed by tis-
sue-culture mediated plant regeneration (e.g., Zhang
et al., 2016; Andersson et al., 2017). However, editing
frequencies using this approach tend to be lower than
with the stable integration of a transgenic cassette,
and in the case of the transient introduction of DNA,
the potential for fragments to be incorporated into the
genome exists (Andersson et al., 2017). The direct
introduction of ribonucleoprotein (RNP) complexes
comprising in vitro assembled sgRNA and Cas protein
into plant cells, followed by the regeneration of edited
genotypes, has also been gaining momentum as an
alternative delivery method in recent years (Woo
et al., 2015; Liang et al., 2017; Andersson et al., 2018).
This approach circumvents the use of exogenous
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DNA altogether, and the RNPs simply degrade within
a short period of time (Kim et al., 2014). While this
strategy certainly holds promise, its feasibility is cur-
rently constrained by our ability (or lack thereof) to
regenerate whole plants from protoplasts or other tis-
sue types, which remains very challenging in many
agronomically important crop cultivars. Indeed, this
limitation can hinder the application of CRISPR/Cas
in general (Atkins and Voytas, 2020), and the devel-
opment/optimization of genotype-independent trans-
formation protocols for these plants are underway in

many instances and will be of paramount importance
for the successful implementation of such breeding
platforms in mainstream elite cultivars, as well as
underutilized crop species, going forward.

A. CRISPR platforms not requiring the prolonged
presence of a transgene

In terms of CRISPR/Cas-based tools that do not
require the extended presence of a transgene, NHEJ-
driven site-specific mutagenesis within coding regions

sgRNA

PAM

Cas
Target 

sequence

Effector protein

nCas or dCas

1. Simple NHEJ 

Outcome: random indel at targeted location

Common uses:

• knock-out via coding sequence disruption

• knock-down via disruption of cis-regulatory element

• up-regulation via disruption of negative cis-element

• increased translation via disruption of uORF

3. Base editing

Effector protein = deaminase

Outcome: C-to-T or A-to-G substitutions

Common uses:

• introduction of stop codon in coding sequence

• alteration of substrate binding sites

4. Epigenetic editing

Effector protein = e.g., glycosylase

Outcome: e.g., targeted DNA demethylation

Common uses:

• transcriptional up-regulation of target gene

*

2. HDR-mediated replacement

Requires: repair DNA or oligonucleotide template

Outcome: base/sequence replacements

Common uses:

• targeted enzyme modulation 

• cisgenic allele replacement

5. Prime editing

Effector protein = reverse transcriptase

Requires: pegRNA bearing RNA repair template

Outcome: base substitutions, small 

insertions/deletions

Potential uses:

• targeted enzyme modulation

• specific alteration of cis-regulatory regions

• introduction of stop codon in coding sequence

Cas-mediated

nCas- or dCas-mediated

Figure 4. CRISPR/Cas applications in plants that do not require the extended presence of a transgene. Red base pairs denote ran-
dom indel mutations at the targeted site, whereas green base pairs represent specific alterations made at targeted loci. Cas,
CRISPR-associated protein; dCas, catalytically dead Cas; DNA, deoxyribonucleic acid; HDR, homology-dependent repair; nCas, Cas
nickase; NHEJ, nonhomologous end-joining; PAM, protospacer adjacent motif; pegRNA, prime editing guide RNA; RNA, ribonucleic
acid; sgRNA, single guide RNA; uORF, upstream open reading frame.
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is the most commonly used approach in the context
of plant breeding to date. The aim of this strategy is
for the introduced indel to disrupt gene function by
causing the production of a null allele, which knocks
out gene function. As such, potential target genes for
breeding using this approach are limited to those that
have a negative role with respect to the particular trait
chosen for improvement. This strategy has been used
to successfully improve a large number of desirable
traits, such as those related to seed quality, nutritional
status and disease resistance, for example, in a wide
range of crop species (Table 2; e.g., Ma et al., 2015;
Morineau et al., 2017; Nekrasov et al., 2017; Li,
Wang, et al., 2018; Okuzaki et al., 2018; Do et al.,
2019; Karunarathna et al., 2020; Subedi et al., 2020;
Tian et al., 2020). Similarly, the knock-down of target
gene expression can be achieved by targeting cis-regu-
latory regions rather than coding sequences using this
same technology (e.g., Rodr�ıguez-Leal et al., 2017;
Zeng, Liu, et al., 2020), which allows for the fine-tun-
ing of transcriptional/functional activity, while larger
targeted deletions of genomic loci can also be incurred
through the use of two sgRNAs simultaneously (e.g.,
Zhou et al., 2014). In addition to its potential use for
the improvement of crop species that are already
grown extensively, indels generated through CRISPR/
Cas NHEJ-mediated targeting also holds promise to
advance the de novo domestication of wild or underu-
tilized species by targeting multiple genes implicated
in the domestication process, including those involved
in plant architecture, flower production, fruit size,
seed shattering and yield (Khan et al., 2019). Such a
feat has been undertaken in stress-tolerant tomato
wild relatives (Li et al., 2018c; Zs€og€on et al., 2018),
rice landraces (Lacchini et al., 2020), pennycress
(Thlaspi arvense; McGinn et al., 2019), and ground-
cherry (Physalis pruinosa; Lemmon et al., 2018).

While the knock-out/knock-down of target genes
can elicit desirable traits in certain instances, in some
cases very little progress has been made as of yet with
respect to identifying negative regulators within path-
ways, and the up-regulation of target gene expression
or enhancement of enzyme activity would allow for
the targeting of substantially more genes of interest.
While achieving such a feat without the lasting pres-
ence of a transgene can be technically challenging,
several options have shown promise in this area. For
example, the disruption of repressor elements within
target gene promoters, as has been demonstrated pre-
viously in tomato (Rodr�ıguez-Leal et al., 2017), or the
NHEJ-based mutation of upstream open reading
frames within 50 untranslated regions of a target gene,

which has been demonstrated to increase translation
of the associated mRNA (Zhang et al., 2018), are both
valuable options in this area provided the necessary
regulatory elements exist in a given gene. NHEJ-medi-
ated mutation of coding sequences is also beginning
to be used in plants as a means of inducing directed
evolution through the introduction of a Cas protein
and a gene-specific sgRNA library (reviewed by Butt
et al., 2019; Kuang et al., 2020), which can allow the
identification of mutations that positively modulate
the activity of the protein encoded by the target gene,
thus increasing genetic diversity and accelerating trait
improvement substantially.

Furthermore, various systems have also been devel-
oped to take advantage of Cas enzymes in which one
or both catalytic domains have been ablated to yield
nickase (nCas) or complete deactivation of cleavage
function (dCas), respectively. This type of Cas enzyme
serves as a scaffold to recruit other effector proteins,
which are guided to specific genomic loci by a sgRNA
without eliciting a DSB (reviewed by Kumlehn et al.,
2018). For example, the fusion of dCas to either the
catalytic domain of the Arabidopsis REPRESSOR OF
SILENCING 1 (ROS1) glycosylase, or a C-terminal
tail that is recognized and bound by a separate mod-
ule containing the catalytic domain of a demethylase,
can be used to trigger cytosine demethylation at a tar-
geted location, at least in instances where transcrip-
tional silencing of a gene is directed by DNA
methylation. This has been shown to result in tran-
scriptional up-regulation of the associated gene
(Gallego-Bartolom�e et al., 2018; Papikian et al., 2019;
Devesa-Guerra et al., 2020), and since such epigenetic
alterations appear to be heritable, it would allow for
the transgene to be segregated out (Gallego-Bartolom�e
et al., 2018; Papikian et al., 2019) and no alteration in
the genome sequence would be incurred. While these
tools are not as simple to implement as NHEJ-based
CRISPR/Cas knock-outs elicited through mutations
within coding sequences, and have therefore not been
used to the same extent as of yet, they certainly have
the potential to broaden CRISPR/Cas-editing capacity
substantially in the future.

Above and beyond knocking-out, down-regulating
or up-regulating target genes, it is also possible to
obtain more precise edits in some cases. For example,
specific edits can be incurred through directed base
substitutions, which can allow for the generation of
stop codons and the rational improvement of protein
function, or allele replacements. One way in which
this can be achieved is by exploiting the error-free
HDR mechanism (involving Cas, sgRNA(s) and a
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donor repair template DNA or oligonucleotide tem-
plate), which has been used to achieve nucleotide or
allele replacements (e.g., Sauer et al., 2016; de Pater
et al., 2018; Li, Zhang, et al., 2018) in plants.
However, the efficiency of this system is far lower
than NHEJ-based editing, which has restricted its
application thus far. The size of the replacement and
organism from which the new allele was derived
would also be important considerations as these fac-
tors would influence downstream regulatory decisions
if the replacement was deemed “transgenic”.

To further facilitate specific nucleotide-level
changes, several NHEJ-mediated alternatives have
been developed in recent years to yield base substitu-
tions. One such platform includes CRISPR/Cas-medi-
ated cytosine and adenine base-editor systems (CBEs
and ABEs) comprising either nCas or dCas fused to a
cytidine or adenosine deaminase (e.g., Zong et al.
2017; Li, Zong, et al., 2018), which allow C-to-T or A-
to-G substitutions in plants, respectively. Such a base
editing approach has been used to successfully attain a
specific C to T transition in genes encoding acetolac-
tate synthase or acetyl-coenzyme A carboxylase, which
confers resistance to particular herbicides in rice
(Shimatani et al., 2017; Li, Zong, et al., 2018), water-
melon (Tian et al., 2018), wheat (Zhang, Liu, et al.,
2019), and maize (Li et al., 2020), for example.
However, the widespread use of base editing has been
limited due to the fact that the targeted bases must be
present within a relatively small window relative to
the PAM sequence, substitutions are limited to C-to-T
and A-to-G transitions, and all C or A bases, respect-
ively, within the window will be converted (Shimatani
et al., 2017). Various efforts are currently underway to
develop novel base editor systems using Cas9 variants
that recognize alternative PAMs (e.g., Hua et al., 2019;
Nishimasu et al., 2018; Wang et al., 2019), as well as
those with altered catalytic windows (Jiang et al.,
2018), which could expand the potential utility of this
platform in crops. Prime editing, which is one of the
newest additions to the CRISPR/Cas toolbox, could
also provide a more widely applicable alternative. This
technology allows for the generation of small inser-
tions (up to approximately 15 nucleotides) and dele-
tions (up to approximately 40 nucleotides), as well as
all possible single nucleotides substitutions, and even
the replacement of three consecutive nucleotides (Lin
et al., 2020) at a targeted locus. This is achieved
through the use of nCas fused to an engineered
reverse transcriptase, along with a prime editing
sgRNA that not only specifies the target site, but also
acts as a template for the chosen edit (Anzalone et al.,

2019). This approach has recently been shown to be
successful in both wheat and rice (Lin et al., 2020),
and while editing efficiencies were relatively low in
this case, technical improvements are almost certainly
on the horizon.

B. CRISPR platforms requiring the prolonged
presence of a transgene

In addition to all of these CRISPR/Cas-derived edits
that can be achieved in a manner that allows the
ultimate development of transgene-free genotypes,
there are also a number of other functionalities that
would require the long-term persistence of the
CRISPR/Cas transgene. For example, genes can be
repressed or activated through the use of dCas9 paired
with an activator (e.g., VP64) or repressor (e.g.,
SRDX) domain, along with a sgRNA specific to the
target sequence (e.g., Piatek et al., 2015; Li, Wang,
et al., 2019; Papikian et al., 2019), in order to elicit
the adjustment of target gene expression. In addition,
Cas13 systems are guided by a single crRNA and
cleave single-stranded RNA targets rather than dou-
ble-stranded DNA, which allows for the knock-down
of gene expression and is particularly useful for elicit-
ing resistance to viruses (Aman et al., 2018; Zhan
et al., 2019). While these platforms have their uses,
the fact that they necessitate the presence of a trans-
gene currently complicates their commercial imple-
mentation in many countries.

C. Potential for off-target effects in plants

In terms of the genetic changes that are incurred
through genome editing platforms, it is clear that
there will not be a one-size fits all outcome given the
vast array of applications. In the case of simple NHEJ-
mediated editing of coding or cis-regulatory regions,
random, short indels are typically seen at the precise
target site in plants. Beyond targeted genetic altera-
tions, there was initially some alarm with respect to
the potential for unintended mutations at off-target
sites in mice (Schaefer et al., 2017); however, it has
since been proposed that such variation was more
likely the result of preexisting genetic variation rather
than the process of genome editing (e.g., Lareau et al.,
2018), and this paper was later retracted.
Furthermore, similar findings have not been corrobo-
rated in animal systems subsequently (Iyer et al.,
2018; Dong et al., 2019; Thomas et al., 2019). A
prevalence for off-target effects stemming from
CRISPR/Cas technology also does not appear to be
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the case in plants, and data are now accumulating
from experiments assessing high probability off-target
sites (biased approach), as well as using whole genome
sequencing (unbiased approach), which indicates that
if present, CRISPR/Cas-derived off-target mutations
are very rare, and in many cases cannot be detected
whatsoever (Table 1; e.g., Zhang, Zhang, et al., 2014;
Peterson et al., 2016; Nekrasov et al., 2017; Feng
et al., 2018; Tang et al., 2018; Lee et al., 2019; Li,
Manghwar, et al., 2019; Young et al., 2019).

In keeping with this, potential off-target mutations
resulting from NHEJ-based, indel-producing, CRISPR/
Cas systems are very unlikely to occur at genomic
sites without sequence homology to the target site in
plants. This is because the specificity of sgRNAs are
highly dependent on the so-called “seed region” of
crRNAs, which in the case of Cas9, encompasses
approximately 8–12 nucleotides upstream of the PAM.
Mismatches of 2 or more nucleotides in this sequence
of the protospacer generally prevent Cas9 cleavage
(Tang et al., 2018; Young et al., 2019; Gerashchenkov
et al., 2020). This means that possible off-target muta-
tions are highly predictable and can very easily be
minimized through the careful selection of target sites.
Several freely accessible web-based tools are now
available to assist with crRNA design, which allows
the in silico assessment of sgRNA specificity to be car-
ried out prior to in planta analyses (e.g., Bae et al.,
2014; Lei et al., 2014; Xie et al., 2014; Michno et al.,
2015; Minkenberg et al., 2019). In addition, the use of
truncated gRNAs (Fu et al., 2014), RNP delivery
(Hahn and Nekrasov, 2019), paired Cas9 nickases
with paired sgRNAS (Mikami et al., 2016), and the
fusion of dCas to the FokI nuclease (Guilinger et al.,
2014) can also increase specificity of CRISPR/Cas sys-
tems. The use of alternative Cas enzymes has also
been shown to reduce off-target effects, and various
high-fidelity Cas9 variants have been engineered to
this effect in recent years (Zhong et al., 2019; Zeng,
Li, et al., 2020). However, given their tendency to
exhibit relatively low activities, along with the high
level of specificity provided by traditional Cas9
enzymes in plants, such an approach will likely be
unnecessary in crop applications.

In the case of other CRISPR/Cas platforms, the
prevalence of off-target effects is slightly more vari-
able, and depends upon the particular technology
used. For example, the use of HDR to achieve allele
replacement would result in what is essentially a
transgenic or cisgenic plant with insertion of the
“foreign” DNA occurring at a known, predetermined
locus. Furthermore, in what appears to be an unusual

case with respect to CRISPR/Cas-based platforms,
CBEs have been found to result in the production of
unexpected mutations in rice, typically in the form of
C-to-T substitutions (Jin et al., 2019). In this instance,
unlike other CRISPR/Cas platforms where rare off-
target mutations are predictable based on sequence
homology, mutations occurred in a more random
manner. This phenomenon appears to be specific to
CBEs, because off-target effects were not noted with
ABEs (Jin et al., 2019).

Therefore, the vast majority of CRISPR/Cas plat-
forms assessed thus far in plants appear to be highly
precise, eliciting very few, if any, off-target effects
from the editing technology itself. However, most gen-
ome editing endeavors in plants currently involve
plant regeneration via tissue culture, and as such,
mutations that are equivalent to those observed using
somaclonal variation as a conventional breeding tech-
nique will be apparent in the resulting genotypes. In
agreement with this, the vast majority of mutations in
CRISPR/Cas-derived plants that have been found to
occur at loci other than those targeted were the result
of background mutations that were incurred during
seed amplification (spontaneous mutations) or tissue
culture (somaclonal mutations), rather than from the
editing components themselves (Tang et al., 2018;
Li, Manghwar, et al., 2019).

VI. Comparison of the possible unanticipated
“risks” among breeding techniques

There has been much discussion concerning the possi-
bility of unintended risks associated with crop
improvement, and for the most part this consideration
has been rather specific to crops derived using bio-
technological approaches, such as the introduction of
an exogenous DNA cassette or genome editing. This
focus on biotechnology-derived genotypes fuels con-
cerns regarding the safety of the novel trait itself, as
well as apprehension that any new genetic variant
might potentially alter genes or pathways in a manner
that could lead to the production of a harmful by-
product. What should instead be at the forefront of
such debates is that unexpected/unknown genetic
alterations are unavoidable and observable in every
crop, regardless of the breeding technology (Council
for Agricultural Science and Technology [CAST],
2018). These even occur spontaneously from one gen-
eration to the next, and are an absolute requisite for
evolution itself, which means that they have laid the
foundation for plant survival and adaptation through-
out history (Weng et al., 2019). Furthermore, since
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genetic variation in the form of mutations that have
either been incurred spontaneously over time or
through biotechnological means are the basis for
achieving alterations in traits, the development of
improved crop cultivars would not be pos-
sible without it.

As mentioned previously, it is typical to see mil-
lions of SNVs and indels between individuals of two
different conventionally bred cultivars of the same
crop species, as well as thousands of differences in
terms of the presence/absence of particular genes (e.g.,
Anderson et al., 2016). Even within cultivars, it is
unlikely that two plants in a field will be genetically
identical (e.g., Haun et al., 2011). This is in compari-
son to the very small number of off-target mutations
that might be elicited through more modern breeding
technologies, such as genome editing. In any case,
despite the considerable genetic differences between
conventionally bred plants, virtually none of which
are anticipated or identified during the breeding pro-
cess, these cultivars are highly similar phenotypically,
typically only differ in a handful of agronomic traits,
and have a very long history of safe use.

Plants have an extraordinary capacity to withstand
major genetic changes without exhibiting detrimental
effects, and even in instances where high loads of
SNVs or deletions of large chromosomal regions have
been incurred, drastic changes in phenotypes are often
not observed (e.g., Bolon et al., 2011; Sevanthi et al.,
2018). This is because in order for a phenotype to
arise due to a mutation, it typically must occur within
either a coding sequence or cis-regulatory region to
have an effect. The occurrence of genic regions varies
from species to species, but in barley, rice and maize,
for examples, they only account for approximately
10–25% of the genome (Barakat et al., 1997; Messing
et al., 2004), which means that the vast majority of
mutations (spontaneous and induced) occur outside
of the gene space (e.g., Tock and Henderson, 2018).
Even when mutations do occur within a gene, many
are silent or missense mutations (Cooper et al., 2008)
that do not change the level, activity or function of
the encoded protein. Furthermore, since high levels of
gene redundancy exist in plant genomes, and particu-
larly in many crop species due to their polyploid
nature (Adams and Wendel, 2005; Comai, 2005),
mutations that inactivate gene function often still do
not translate into an unanticipated trait as a result of
this buffering effect (Parry et al., 2009). This means
that the vast majority of potential off-target mutations
that may occur through any breeding method would
have no effect on plant phenotype. Correspondingly,

more than 90% of the induced mutations in gamma
irradiated and EMS-mutagenized tomato plants were
found to be located in intergenic regions, and only
0.2% of mutations were detrimental (Shirasawa
et al., 2016).

Even in instances where genetic variation intro-
duced during the breeding process does yield an
unanticipated trait, the likelihood of this impacting
the safety of the crop in the context of food, feed or
the environment is very low. In terms of plant breed-
ing-related changes that may affect food and feed
safety, most concerns typically encompass the poten-
tial production of toxins, anti-nutrients or allergens
(reviewed by Schnell et al., 2015). While conventional
breeding methods have only very rarely resulted in
the development of cultivars with hazardous attrib-
utes, in these cases they have almost exclusively led to
increases in the levels of well-characterized, endogen-
ous compounds that the plants were already known to
produce rather than an entirely novel compound
(Steiner et al., 2013). For example, certain varieties of
potato achieved using conventional breeding methods
(e.g., Akeley et al., 1968) were withdrawn from both
U.S. and Swedish markets as a result of increased gly-
coalkaloid content (Zitnak and Johnston, 1970;
Hellen�as et al., 1995). Despite this, one of these high-
glycoalkaloid potatoes (Lenape) continues to be used
as a parent in conventional breeding programs due to
its other positive attributes (e.g., Bethke, 2018). As a
result of these issues relating to glycoalkaloid levels in
white potatoes, all new varieties (regardless of the
breeding method used) are now screened in this con-
text. Similarly, canola breeders monitor levels of glu-
cosinolates prior to commercialization (e.g.,
Spasibionek et al., 2020) – but these types of assess-
ments are specific to the particular crop and relevant
compounds (reviewed by Herman and Price, 2013). In
spite of these few incidences where crop safety has
been compromised as a result of conventional breed-
ing, cultivars derived using these methods have a long
and proven track record of safety overall.

Given that the incidence of “off-target”/unknown
genetic effects resulting from the use of transgenic,
cisgenic and RNAi technologies has been found to be
very low compared to conventional breeding methods
and/or spontaneous mutations that have occurred
over time, one would assume that the risk associated
with such changes would be negligible. The random
insertion of an exogenous DNA cassette, which
remains within the plant cultivar and is a cornerstone
of these biotechnological breeding approaches, could
feasibly lead to the disruption of a gene depending on
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the genomic site of integration. While this could
knock-out the function of an endogenous gene, result-
ing in an apparent negative agronomic trait, it is
unlikely that this would compromise the safety of the
plant due to the plasticity of plant genomes (Sevanthi
et al., 2018). Indeed, instead of the compositional dif-
ferences that were feared in cultivars derived from the
integration of an exogenous DNA cassette (i.e. trans-
genic, cisgenic and RNAi), almost 25 years worth of
research has shown that compositional variation stem-
ming from conventional breeding (which has an over-
whelming history of safe use) and environmental
factors dwarf any potential changes induced in bio-
technology-derived crops (e.g., Esposito et al., 2002;
Herman et al., 2004; McCann et al., 2006; Harrigan
et al., 2009; Herman et al., 2010; Ridley et al., 2011;
Kim et al., 2012; Muccilli et al., 2020).
Transcriptomic, proteomic and metabolomic compari-
sons of transgenic crops and their nontransgenic
counterparts have corroborated these results, with
substantial differences being environmentally-induced
or noted between conventionally bred cultivars rather
than between transgenic vs. conventional lines (e.g.,
Corpillo et al., 2004; Catchpole et al., 2005;
Lehesranta et al., 2005; Baker et al., 2006; Baudo
et al., 2006; Abdeen et al., 2010; Coll et al., 2010,
Kogel et al., 2010; Coll et al., 2011; Ricroch et al.,
2011; Gong et al., 2012; Wang, Zhang, et al., 2018).
Since DNA and RNA themselves do not constitute a
food safety risk, the greatest theoretical risk associated
with these plants then comes from the novel pro-
tein(s) derived from the introduced genetic cassettes
themselves, and in this case, the level of risk would be
specific to the particular protein(s) being produced.
These proteins consist of those that elicit the desired
trait, and may also include protein(s) associated with
a selectable marker if present (typically providing anti-
biotic or herbicide resistance). Since these proteins are
purposefully produced in these plants, assessing their
specific risk should be a rather straightforward and
simple endeavor.

In the case of NHEJ-mediated disruption or substi-
tution of a few base pairs within a coding/cis-regula-
tory region using CRISPR/Cas, no exogenous protein
would be produced once the transgene is segregated
out. Furthermore, with appropriately designed
sgRNAs, the genetic change(s) incurred in the target
gene and possible off-target mutations are negligible
compared to those derived from traditional breeding
and naturally occurring diversity in plants (reviewed
by Young et al., 2019). In addition, unlike conven-
tional breeding methods, any possible off-target

mutations are very easy to predict as a result of their
homology to the crRNA target site, which means that
the identification of off-target alterations can be
anticipated, screened for and identified. Furthermore,
if such an off-target mutation were recognized, its
unlinked nature with the targeted mutation means
that its removal via segregation prior to commercial-
ization would be straightforward, which again differs
substantially from conventionally bred crops, where
the location of “off-target” mutations is typically never
known. As such, unanticipated risks from this breed-
ing technology are extremely low compared to other
methods due to its highly precise nature (reviewed by
Troadec and Pag�es, 2019). However, as discussed pre-
viously, CRISPR/Cas-related technology is expanding
at a rapid pace, and the level of risk will likely be
case-specific. For example, HDR-mediated insertion of
an exogenous DNA cassette from an unrelated organ-
ism would be a very different case than simple NHEJ-
mediated disruption of a coding sequence, and would
instead be more similar to transgenics due to the pres-
ence of a new protein product. However, any potential
issues related to insertional effects would be mini-
mized with HDR-mediated insertion compared to
traditional transgenics as a result of the nonrandom
nature of CRISPR/Cas technology.

VII. Breeding platforms and crop regulation

The majority of countries currently require premarket
safety assessment of all transgenic and RNAi plants,
which are typically shrouded under the umbrella term
“GM”, while those derived from conventional breed-
ing techniques such as wide crosses and induced
mutagenesis do not require such evaluations (Mejia
et al., 2017). Unfortunately, such discrepancies in
regulatory requirements between new crop varieties
that have been developed using conventional and bio-
technological breeding approaches have stifled the
commercialization of many transgenic crops due to
the exorbitant cost and duration of de-regulation
(Macnaghten and Habets, 2020). While a plethora of
traits have been improved in crop species to date
using a transgenic approach (e.g., Xue et al., 2004;
Li, Liu, et al., 2013; Usher et al., 2015; Paul et al.,
2017; Singer et al., 2019), the market is dominated
by two main transgenic traits – herbicide tolerance
(e.g., RoundUp Ready) and/or insect resistance (e.g.,
through the expression of Cry proteins from Bacillus
thuringiensis [Bt]). Neither of these traits were
designed explicitly to benefit the consumer, but
instead were directed at increasing profits for large
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producer outfits and seed companies (Macnaghten
and Habets, 2020). In spite of this, the adoption of
“GM” crops by growers has been overwhelming, and
as of 2018, such crops were grown by 17 million
farmers in 26 countries on 192 million hectares of
land, with dozens of further countries importing
“GM” crops for various purposes (Schiemann et al.,
2019; Qaim, 2020). Indeed, it has been estimated that
on average, such crops have increased crop yields by
22% and increased profit gains for farmers by 68%
overall (Kl€umper and Qaim, 2014), leading to cumula-
tive increases in gross farm incomes of 225 billion
USD between 1996 and 2018 in both developing and
industrial countries (Brookes and Barfoot, 2020a). To
put this in perspective, in order to maintain current
agricultural production outputs without “GM” crops,
nearly 25 million hectares of additional arable land
would need to be cultivated worldwide (Qaim, 2016).
The adoption of “GM” crops has also led to positive
health (Smyth, 2020) and environmental impacts,
including reductions in the amount of chemicals
applied, as well as a decrease in fuel use and facilita-
tion of reduced-tillage practices, which minimizes ero-
sion and greenhouse gas emissions (Brookes and
Barfoot, 2020b; Qaim, 2020).

Although the commercialization of transgenic crops
has largely been limited to larger corporations that
can afford the financial investment required for de-
regulation thus far, this is not the result of any inher-
ent characteristic of transgenic crops, and it is highly
unfortunate that the vast majority of traits developed
by scientists in noncorporate settings (e.g., Xue et al.,
2004; Li, Liu, et al., 2013; Usher et al., 2015; Paul
et al., 2017) do not make it into farmers’ fields under
current regulatory frameworks. While there is no
doubt that the safety of new crop cultivars should be
at the forefront of deployment, the incredibly broad
compositional study costs that are required of trans-
genic, but typically not conventionally-bred, crops do
not appear to provide any benefits in terms of safety
since differences in compositional equivalence have
never been noted (reviewed by Herman and Price,
2013). Instead, it seems evident that focusing on the
levels of known, endogenous toxins or allergens that
are present in some crops, as is the case with conven-
tionally-bred crops, along with the particular protein
product(s) derived from the transgene itself, would be
a sensible and prudent alternative.

Until recently, it was fairly clear whether a crop
was to be subject to premarket safety assessment in
most jurisdictions. However, with the advent of new

technologies such as genome editing, which can yield
cultivars with genetic alterations that could theoretic-
ally also have been generated using traditional breed-
ing techniques, many countries are aiming to
modernize their frameworks and/or clarify the regula-
tory requirements for these crops (for reviews see
Metje-Sprink et al., 2020; Parrott et al., 2020; Schmidt
et al., 2020). Since the genetic outcomes of genome
editing can vary widely depending on the specific
platform, one system being used as a template for
adapting biosafety legislation is to distinguish between
three different types of alterations derived from site-
directed nucleases (SDNs). SDN-1 applications involve
the production of a DSB and the NHEJ-mediated gen-
eration of a random indel or point mutation at a pre-
determined locus without the use of a repair template
or the lasting presence of any foreign DNA.
Conversely, SDN-2 involves the use of a short nucleo-
tide template to alter up to 20 nucleotides via HDR,
while SDN-3 includes the insertion of larger foreign
DNA elements using HDR or NHEJ (reviewed by
CAST, 2018; Schmidt et al., 2020). Unfortunately, as
genome editing technology evolves, gaps in this sys-
tem are becoming apparent. For instance, while base
and prime editing could feasibly fall within SDN-1
and SDN-2 classifications, respectively, it is currently
unclear where epigenetic editing would be positioned,
and the system does not make any distinction between
transgenic and cisgenic sequences.

In countries where decisions have been made
regarding the regulation of crops derived from gen-
ome editing, asynchrony still exists. For example, the
U.S. Department of Agriculture (USDA) Animal and
Plant Health Inspection Service (APHIS) has stated
that plants bearing a single NHEJ-mediated mutation
achieved in the absence of an exogenous repair tem-
plate, base pair substitution, gene introduced from a
sexually compatible species or alteration of a gene to
correspond with an allele known to be present in the
gene pool (i.e. SDN-1, some forms of SDN-2, and cis-
genic versions of SDN-3) will not require de-regula-
tion prior to commercial implementation as long as
they do not demonstrate pest-related characteristics,
because such alterations could have been achieved
using traditional breeding techniques. Furthermore,
plants bearing a trait(s) with a mechanism of action
that is the same as in a previously de-regulated plant
in the United States are also exempt (USDA-APHIS
Department of Agriculture, 2020). Some regulatory
authorities in other countries (e.g., Japan, Israel,
Australia and several South American countries) have
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also come to resolutions whereby genome edited
plants that do not bear foreign DNA and/or use sub-
stantial template to guide genome repair (i.e. SDN-1,
or SDN-1 and SDN-2) are not regulated as “GM”.
Discussions are currently in progress to introduce
comparable regulatory transformations in many other
countries as well (reviewed by Schmidt et al., 2020;
Schulman et al., 2020). However, differences exist in
terms of what information is required by relevant
authorities, and in the case of Japan, for example, it is
necessary to indicate the method used, gene modified,
trait altered, and possible effects on biological diver-
sity, as well as to provide confirmation that the plant
does not possess foreign DNA; all of which would be
made available to the public in a manner that
respected confidentiality considerations (Ministry of
the Environment, 2018).

Conversely, Canada’s regulatory system currently
differs from those of many other countries, with the
trigger for premarket assessment being focused on the
trait introduced (for example, as with plants with
novel traits; PNTs) rather than the breeding method
used to achieve the trait (reviewed by Schmidt et al.,
2020). Although there are clear benefits to having a
product-based system, at present there is a lack of
clearly delineated standards that specify what traits
would be considered novel. This deficit in clarity sur-
rounding the regulatory process itself, as well as its
divergence from regulatory laws in other countries,
can be problematic. In addition, while the term
“PNT” can be applied to even conventionally-bred
cultivars, there is a tendency to assume that such
plants are in all cases “GM”, which can complicate
trade (reviewed by Eriksson et al., 2019).

The European Union and New Zealand, on the
other hand, have opted to subject genome edited
crops to strict “GM” regulatory laws, regardless of the
genetic alteration or trait (Callaway, 2018; Schmidt
et al., 2020; Schulman et al., 2020). Such decisions are
in no way evidence-based, because crop varieties
developed using induced random mutagenesis are not
subjected to the same regulatory barriers despite the
presence of a large number of unknown genetic alter-
ations (Schulman et al., 2020). To further complicate
matters, such a law is technically unenforceable since
cultivars bearing genome editing-based SDN-1 altera-
tions are indistinguishable from spontaneously occur-
ring variants, or those resulting from conventional
breeding (Schmidt et al., 2020). Such a regulatory
approach will not only lead to a substantial impedi-
ment to both innovation and progress in crop breed-
ing in these countries (reviewed by Wolter et al.,

2019), but could also prove extremely detrimental for
farmers, the general public, member states, inter-
national trade and the environment (reviewed by
Eriksson et al., 2019; Lemay and Moineau, 2020;
Schmidt et al., 2020; Schulman et al., 2020).

Unfortunately, decisions such as these tend to be
based in part on unsubstantiated opinions, politics
and misinformation (Macnaghten and Habets, 2020),
and there is thus a critical need to increase under-
standing related to biotechnological breeding plat-
forms, as well as public awareness, in order to elicit
rational, evidence-based, flexible and trade-facilitative
amendments to our current crop regulatory laws as a
means of keeping pace with evolving breeding tech-
nologies. While several countries appear to be gearing
toward regulatory approaches whereby insertions/
replacements derived from a compatible source plant,
indels, and the modulation of one or a small number
of base pairs would not require premarket safety
assessment, the question will arise as to precisely how
many nucleotide substitutions, sequential or not, can
be introduced before it will be considered necessary?
What, exactly, constitutes “foreign DNA”? This is
especially relevant as it becomes more apparent how
much genetic variation has arisen spontaneously and
exists among conventionally bred cultivars. While
there is no doubt that this threshold will be com-
pletely arbitrary, it will be a necessary component of
deriving a clear and straightforward regulatory system
(reviewed by Custers et al., 2018).

Furthermore, although a focus on the scientific
bases of genetic alterations and consequent phenotypic
outcomes will undoubtedly be a cornerstone of pre-
market assessments and decision-making by policy-
makers, it may also be wise to consider wider ethical
and socio-economic impacts of subjecting new crop
varieties to burdensome and costly premarket safety
assessments as a result of the breeding technology
used for their development. Unlike potential economic
impacts, these considerations have often been left
largely unacknowledged in past “GM” safety and risk
discourse, which has likely contributed to current con-
troversies surrounding “GM” crops (Macnaghten and
Habets, 2020).

VIII. Conclusions

For over 10,000 years, humans have been using the
genetic diversity engendered by spontaneous muta-
tions and recombination as the basis for “improving”
crops to better suit our needs. Traditional breeding
methods have been very successful in terms of
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generating elite crop cultivars that are widely grown
today, and such approaches remain a foundation of
crop improvement. Although the development of
marker-assisted (Collard and Mackill, 2008) and gen-
omic (Desta and Ortiz, 2014) selection have increased
the efficiency of such breeding strategies, germplasm
improvement remains a lengthy and laborious
endeavor, where linkage drag poses a serious challenge
(reviewed by Wolter et al., 2019). In addition, since
functional diversity is often limited in elite varieties
that have undergone various genetic bottlenecks both
before and during domestication (Shi and Lai, 2015),
the outcome of breeding using such methods can be
unpredictable at best, and in some cases impossible.
Given the rapid changes that are currently occurring
in the context of crop demand and climate change,
there is a vital need to increase both the pace and pre-
cision of breeding, and introduce new genetic vari-
ation, through the complementary use of modern
techniques. While many such techniques now exist,
they are evolving rapidly, and further innovation in
this area will provide one piece of the puzzle in terms
of achieving food security in the future.

Variation in DNA sequences provides the basis for
all breeding approaches, both conventional and bio-
technological. However, such changes are not in any
way specific to crop breeding since plant genomes are
constantly incurring novel mutations, structural varia-
tions, transposon insertions and new alleles/genes
through processes that are not human-directed
(McClintock, 1984; Weber et al., 2012). Due to the
exceptional plasticity of plant genomes, the vast
majority of these mutations, as well as those genomic
changes that may be elicited through breeding, have
an incredibly low potential to lead to a phenotypic
alteration that will adversely affect crop safety
(reviewed by Schnell et al., 2015). While there have
been enduring concerns regarding the safety of bio-
technologically-derived crops compared to those bred
conventionally, these worries have not been substanti-
ated. Similarly, genome edited plants have demon-
strated few, if any, off-target mutations stemming
from the technology itself.

Although an enormous number of scientific studies
have overwhelmingly supported the safety of biotech-
nologically-derived crops, there remains an undercur-
rent of anxiety regarding “GM” crops in a substantial
proportion of the general public (reviewed by Tabei,
2019). Such concerns are largely driven by a growing
educational gap in the context of basic biology, genet-
ics and breeding practices, since this has in no way
kept pace with the rapid growth in science that has

occurred over the last few decades (Kausch et al.,
2019). These discrepancies translate into a fear of the
unknown (CAST, 2013), and have contributed to the
poor public perception surrounding “GM” crops that
are prevalent today despite the fact that very little
apprehension is exhibited when the same technologies
are used in pharmacological and medical applications
(Malyska et al., 2016; Cui and Shoemaker, 2018). The
notion that breeding techniques that make use of
“natural” processes to elicit targeted genetic alterations
are “unnatural” is nonsensical, as is the perception
that a single mutation will pose a large risk when the
same mutation mixed with thousands of other
unknown mutations will not (reviewed by Schulman
et al., 2020).

We are at a point where it is imperative that we
provide a means of filling in these knowledge gaps
and at the same time restructure existing crop regula-
tory practices to take into consideration the recent
accumulation of knowledge regarding the genetic
changes that occur spontaneously, as well as those
introduced through biotechnology and that have accu-
mulated via conventional breeding. In order for these
changes to provide maximal capacity to achieve sub-
stantial improvements in crop productivity and quality
in a relatively short timeframe, updated legislation
should be evidence-based, internationally coherent,
and allow flexibility in terms of adapting to continu-
ously emerging technologies (reviewed by Duensing
et al., 2018). Reducing the regulatory burden of gen-
ome edited crops, and potentially also those derived
using other technologies such as cisgenesis, will mean
an expedited and more cost-efficient path to commer-
cialization. This would allow both academic and pub-
lic sector research institutes to diversify the array of
improved traits to include those with consumer and/
or environmental benefits, rather than those solely
aimed at generating profits. Indeed, in Argentina,
there is evidence that such an approach toward gen-
ome edited crops has already led to an increase in the
proportion of product applications from the public
sector, as well as a wider range of products submitted
for review (Schmidt et al., 2020). If carried out syn-
chronously across nations, this would lead to a con-
siderable expansion in the innovation and
advancement of crop breeding endeavors in a manner
that would benefit growers, the general public and the
environment, while at the same time easing inter-
national trade barriers, which would not only provide
economic advantages, but would also help to equalize
accessibility in a global context.
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